Skip to main content
Log in

Effect of the quasi-continuous equal-channel angular pressing on the structure and functional properties of Ti–Ni-based shape-memory alloys

  • Structure, Phase Transformations, and Diffusion
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of severe plastic deformation by equal-channel angular pressing (ECAP) under normal and quasi-continuous regimes on the structure and the mechanical and functional properties of a Ti–50.2 at % Ni shape-memory alloy (SMA) has been studied. ECAP was carried out at an angle of intersection of channels of 120° in the normal regime with heating between passes at 450°C for 20 passes and in the quasi-continuous regime at the temperature of 400°C for three, five, and seven passes. The hot screw rolling with subsequent annealing at 750°C for 30 min and cooling in water was used as a control treatment (CT). A mixed submicrocrystalline and nanosubgrained structure was formed. The increase in the number of passes from three to seven led to a decrease in the average size of structural elements from 115 ± 5 to 103 ± 5 nm and to an increase in the fraction of grains/subgrains having a size less than 100 nm. After ECAP (seven passes) and post-deformation annealing at the temperature of 400°C for 1 h, a completely recoverable strain was 9.5%; after normal ECAP, 7.2%; after CT, 4.0%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev and I. V. Aleksandrov, Nanostructural Materials Obtained by Severe Plastic Deformation (Integratsiya, Moscow, 2000).

    Google Scholar 

  2. R. Z. Valiev, “Nanomaterial advantage,” Nature 419, 887–889 (2002).

    Article  Google Scholar 

  3. I. Yu. Khmelevskaya, S. D. Prokoshkin, S. V. Dobatkin, and V. V. Stolyarov, “Structure and properties of severely deformed Ti–Ni-based shape memory alloys,” J. Phys. 4, 819–822 (2003).

    Google Scholar 

  4. I. Yu. Khmelevskaya, I. B. Trubitsyna, S. D. Prokoshkin, S. V. Dobatkin, E. V. Tatyanin, V. V. Stolyarov, and E. A. Prokofiev, “Thermomechanical treatment of Ti–Ni–based shape memory alloys using severe plastic deformation,” Mater. Sci. Forum 426–432, 2765–2770 (2003).

    Article  Google Scholar 

  5. S. D. Prokoshkin, I. Yu. Khmelevskaya, S. V. Dobatkin, I. B. Trubitsyna, V. V. Stolyarov, and E. A. Prokofiev, “Structure evolution upon severe plastic deformation of TiNi-based shape–memory alloys,” Phys. Met. Metallogr. 97, 619–625 (2005).

    Google Scholar 

  6. S. D. Prokoshkin, I. Y. Khmelevskaya, S. V. Dobatkin, I. B. Trubitsyna, E. V. Tatyanin, V. V. Stolyarov, and E. A. Prokofiev, “Alloy composition, deformation temperature, pressure and post–deformation annealing effects in severely deformed Ti–Ni based shape memory alloys,” Act. Mater. 53, 2703–2714 (2005).

    Article  Google Scholar 

  7. I. B. Trubitsina, Structure Formation and Functional Properties of Ti–Ni Alloys after Severe Plasric Deformation (NITU MISiS, Moscow, 2005) [in Russian].

    Google Scholar 

  8. V. M. Segal, “Plastic treatment of metals by simple shear,” Izv. Akad. Nauk SSSR, Met., No. 1, 115–123 (1981).

    Google Scholar 

  9. V. M. Segal, “Development of material treatment by severe plastic deformation,” Russ. Metall. (Metally) 2004, 2–9 (2004).

    Google Scholar 

  10. R. Z. Valiev and T. G. Langdon, “Principles of equalchannel angular pressing as a processing tool for grain refinement,” Progr. Mater. Sci. 51, 881–981 (2006).

    Article  Google Scholar 

  11. G. Raab, “The innovation potential of ECAP techniques of severe plastic deformation,” Mater. Sci. Eng. 63, 012009 (2014).

    Google Scholar 

  12. R. Kocich, L. Kuncická, and A. Machácková, “Twist channel multi-angular pressing (TCMAP) as a new SPD process: Numerical and experimental study,” Mater. Sci. Eng., A 612, 445–455 (2014).

    Article  Google Scholar 

  13. A. V. Botkin, “Scientific-Methodological Foundations of Designing Angular-Pressing Processes,” Doctoral (Eng.) Dissertation (UGATU, Ufa, 2013).

    Google Scholar 

  14. D. V. Gunderov, A. V. Polykov, and I. P. Semenova, “Evaluation of microstructure, macrostructure and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing,” Mater. Sci. Eng., A 562, 128–136 (2013).

    Article  Google Scholar 

  15. V. V. Stolyarov, E. A. Prokof’ev, S. D. Prokoshkin, S. V. Dobatkin, I. B. Trubitsyna, I. Yu. Khmelevskaya, V. G. Pushin, and R. Z. Valiev,”Structural features, mechanical properties, and the shape-memory effect in TiNi alloys subjected to equal-channel singular pressing,” Phys. Met. Metallogr. 100, 608–612 (2005).

  16. V. Brailovski, S. Prokoshkin, I. Khmelevskaya, K. Inaekyan, V. Demers, S. Dobatkin, and E. Tatyanin, “Structure and properties of the Ti–50.0 at % Ni alloy after strain hardening and nanocrystallizing thermomechanical processing,” Mater. Trans. 47, 795–804 (2006).

    Article  Google Scholar 

  17. V. Demers, V. Brailovski, S. Prokoshkin, K. Inaekyan, E. Bastarash, I. Khmelevskaya, and S. Dobatkin, “Functional properties of nanostructured Ti–50.0 at % Ni alloy,” J. ASTM Int. (JAI) 3(6), 1–11 (2006).

    Google Scholar 

  18. S. D. Prokoshkin, V. Brailovskii, I. Yu. Khmelevskaya, S. V. Dobatkin, K. E. Inaekyan, V. Demers, and E. V. Tat’yanin, “Formation of nanocrystalline structure upon severe rolling plastic deformation and annealing and improvement of set of functional properties of Ti–Ni alloys,” Bull. Russ. Acad. Sci.: Phys. 70, 1536–1541 (2006).

    Google Scholar 

  19. V. G. Pushin, R. Z. Valiev, Y. T. Zhu, S. D. Prokoshkin, D. V. Gunderov, and L. I. Yurchenko, “Effect of equal channel angular pressing and repeated rolling on structure phase transformations and properties of TiNi shape memory alloys,” Mater. Sci. Forum 503–504, 539–544 (2006).

    Article  Google Scholar 

  20. I. Yu. Khmelevskaya, S. D. Prokoshkin, S. V. Dobatkin, E. V. Tatyanin, and I. B. Trubitsyna, “Studies of composition, deformation temperature and pressure effects on structure formation in severely deformed TiNi–based alloy,” Mater. Sci. Eng., A 438–440, 472–475 (2006).

    Article  Google Scholar 

  21. I. Yu. Khmelevskaya, S. D. Prokoshkin, I. B. Trubitsyna, M. N. Belousov, S. V. Dobatkin, E. V. Tatyanin, A. V. Korotitskiy, V. Brailovski, V. V. Stolyarov, and E. A. Prokofiev, “Structure and properties of Ti–Ni-based alloys after equal-channel angular pressing and high-pressure torsion,” Mater. Sci. Eng., A 481–482, 119–122 (2008).

    Article  Google Scholar 

  22. D. Gunderov, D. Lukyanov, E. Prokofiev, A. Churakova, V. Pushin, S. Prokoshkin, V. Stolyarov, and R. Valiev, “Microstructure and mechanical properties of the SPD-processed TiNi alloys,” Mater. Sci. Forum 738–739, 486–490 (2013).

    Article  Google Scholar 

  23. D. Yu. Zhapova, “Microstructure Evolution and Its Effect on Martensitic Transformations and Nonelastic Properties of Titanium Nickelide-Based Binary Alloys upon Warm Deformation,” Candidate Sci. (Eng.) Dissertation (IFPM SO RAN, Tomsk, 2013).

    Google Scholar 

  24. A. A. Churakova and D. V. Gundarev, “Effect of thermocycling on the temperatures of phase transformations, structure, and properties of the Ti50.0Ni50.0 equiatomic alloy,” Phys. Met. Metallogr. 117, 96–106 (2016).

    Article  Google Scholar 

  25. H. S. Kim, “Prediction of temperature rise in equal channel angular pressing,” Mater. Trans. 42, 536–538 (2001).

    Article  Google Scholar 

  26. H. Shahmir, M. Nili-Ahmadabadi, M. Mansouri- Arani, and T. G. Langdon, “The processing of NiTi shape memory alloys by equal-channel angular pressing at room temperature,” Mater. Sci. Eng., A 576, 178–184 (2013).

    Article  Google Scholar 

  27. A. V. Korotitskii, “Express-estimation of parameters of form restoration of shape-memory alloys after deformation induced by bending,” in Proc. 5th Eur.-Asia Sci.Tech. Conf. “Strength of inhomogeneous Structures” PROST 2010 (MISiS, Moscow, 2010).

    Google Scholar 

  28. V. Brailovski, S. D. Prokoshkin, P. Terriault, and F. Trochu, Shape Memory Alloys: Fundamentals, Modeling and Applications (ETS Publ., Monreal, 2003).

  29. S. V. Oleinikova, S. D. Prokoshkin, L. M. Kaputkina, I. Yu. Khmelevskaya, A. A. Kadnikov, and L. A. Zaitseva, “Effect of ageing on mechanical behavior of Ti–50.7% Ni alloy,” Tekhnol. Legk. Splavov, No. 4, 28–34 (1990).

    Google Scholar 

  30. V. Brailovski, S. Prokoshkin, K. Inaekyan, and V. Demers, “Functional properties of nanocrystalline, submicrocrystalline and polygonized Ti–Ni alloys processed by cold rolling and post-deformation annealing,” J. Alloys Compd. 509, 2066–2075 (2011).

    Article  Google Scholar 

  31. K. A. Polyakova-Vachiyan, E. P. Ryklina, S. D. Prokoshkin, and S. M. Dubinskii, “Dependence of the functional characteristics of thermomechanically processed titanium nickelide on the size of the structural elements of austenite,” Phys. Met. Metallogr. 117, 817–827 (2016).

    Article  Google Scholar 

  32. S. D. Prokoshkin, V. Brailovskii, A. V. Korotitskii, K. E. Inaekyan, and A. M. Glezer, “Specific features of the formation of the microstructure of titanium nickelide upon thermomechanical treatment including cold plastic deformation to degrees from moderate to severe,” Phys. Met. Metallogr. 110, 289–303 (2010).

    Article  Google Scholar 

  33. S. D. Prokoshkin, I. Yu. Khmelevskaya, V. Brailovski, F. Trochu, and V. Y. Turilina, “Structure and deformation diagrams of NiTi alloys subjected to a low-temperature thermomechanical treatment with postdeformation heating,” Phys. Met. Metallogr. 91, 423–431 (2001).

    Google Scholar 

  34. A. Kreitcberg, V. Brailovski, S. Prokoshkin, D. Gunderov, M. Khomutov, and K. Inaekyan, “Effect of the grain/subgrain size on the strain-rate sensitivity and deformability of Ti–50 at %Ni alloy,” Mater. Sci. Eng., A 622, 21–29 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Khmelevskaya.

Additional information

Original Russian Text © I.Yu. Khmelevskaya, R.D. Karelin, S.D. Prokoshkin, V.A. Andreev, V.S. Yusupov, M.M. Perkas, V.V. Prosvirnin, A.E. Shelest, V.S. Komarov, 2017, published in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 3, pp. 293–300.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khmelevskaya, I.Y., Karelin, R.D., Prokoshkin, S.D. et al. Effect of the quasi-continuous equal-channel angular pressing on the structure and functional properties of Ti–Ni-based shape-memory alloys. Phys. Metals Metallogr. 118, 279–287 (2017). https://doi.org/10.1134/S0031918X17030073

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17030073

Keywords

Navigation