Skip to main content

Advertisement

Log in

Effect of Quasi-Continuous Equal-Channel Angular Pressing on Structure and Properties of Ti-Ni Shape Memory Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of equal-channel angular pressing (ECAP) in quasi-continuous mode on the structure formation and mechanical and functional properties of a near-equiatomic Ti-Ni shape memory alloy (SMA) was studied in this work. ECAP with channel intersection angles of 110° and 120° was carried out at a temperature of 350-450 °C for 2-7 passes. Optimum deformation temperatures of ECAP in quasi-continuous mode are determined as 400 °C for ECAP with a channel intersection angle of 120° and 450 °C for 110°. ECAP with a channel intersection angle of 110° at a temperature of 450 °C yields high values of strength (yield stress σy = 1,090 MPa, ultimate tensile strength σв = 1,150 MPa) and functional (maximum value of completely recoverable strain of 7.5% after ECAP and 8.4% after the addition of post-deformation annealing (PDA) at 400 °C for 1 h) characteristics. With the increase in the deformation temperature of quasi-continuous ECAP with a channel intersection angle of 110° from 350 to 450 °C, structure-morphological transformation in Ti-Ni SMA occurs. The shape of structural elements (grains and subgrains) changes from elongated to equiaxed; the size of the structural elements increases from less than 100 nm to 100-250 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  1. V. Brailovski, S.D. Prokoshkin, P. Terriault, F. Trochu, Shape Memory Alloys: Fundamentals, Modeling and Applications, Monreal: ETS Publishing, 2003, 851 p, https://espace2.etsmtl.ca/id/eprint/3754

  2. J.M. Jani, M. Leary, A. Subic and M.A. Gibson, A Review of Shape Memory Alloy Research, Applications and Opportunities, Mater. Des., 2014, 56, p 1078–1113. https://doi.org/10.1016/j.matdes.2013.11.084

    Article  CAS  Google Scholar 

  3. N. Resnina and V. Rubanik, Shape Memory Alloys: Properties, Technologies, Opportunities, Trans. Tech. Publications, Praffikon, 2015, p 640

    Google Scholar 

  4. Q. Sun, R. Matsui, K. Takeda, E. Pieczyska, Advances in Shape Memory Materials: In Commemoration of the Retirement of Professor Hisaaki Tobushi. New York: Springer, 2017, 73, 241 p, https://doi.org/https://doi.org/10.1007/978-3-319-53306-3

  5. Z. Zeng, B.Q. Cong, J.P. Oliveira, W.C. Ke, N. Schell, B. Peng, Z.W. Qi, F.G. Gea, W. Zhange and S.S. Ao, Wire and Arc Additive Manufacturing of a Ni-Rich NiTi Shape Memory Alloy: Microstructure and Mechanical Properties, Addit. Manuf., 2020, 32, p 101051. https://doi.org/10.1016/j.addma.2020.101051

    Article  CAS  Google Scholar 

  6. J.P. Oliveira, D. Barbosa, F.B. Fernandes and R.M. Miranda, Tungsten Inert Gas (TIG) Welding of Ni-Rich NiTi Plates: Functional Behavior, Smart Mater. Struct., 2016, 25(3), p 03LT01. https://doi.org/10.1088/0964-1726/25/3/03LT01

    Article  CAS  Google Scholar 

  7. J.P. Oliveira, A.J. Cavaleiro, N. Schell, A. Stark, R.M. Miranda, J.L. Ocana and F.M. Braz Fernandes, Effects of Laser Processing on the Transformation Characteristics of NiTi: A Contribute to Additive Manufacturing, Scripta Mater., 2018, 152, p 122–126. https://doi.org/10.1016/j.scriptamat.2018.04.024

    Article  CAS  Google Scholar 

  8. K.A. Polyakova, E.P. Ryklina and S.D. Prokoshkin, Effect of Grain Size and Ageing-Induced Microstructure on Functional Characteristics of a Ti-507 at% Ni Alloy, Shape Memory and Superelasticity, 2020, 6, p 139–147. https://doi.org/10.1007/s40830-020-00269-z

    Article  Google Scholar 

  9. E.P. Ryklina, K.A. Polyakova, NYu. Tabachkova, N.N. Resnina and S.D. Prokoshkin, Effect of B2 Austenite Grain Size and Aging Time on Microstructure and Transformation Behavior of Thermomechanically Treated Titanium Nickelide, J. Alloys Compd., 2018, 764, p 626–638. https://doi.org/10.1016/j.jallcom.2018.06.102

    Article  CAS  Google Scholar 

  10. D. Gunderov, A. Churakova, A. Lukyanov, E. Prokofiev, V. Pushin, A. Kreitcberg and S. Prokoshkin, Features of the Mechanical Behavior of Ultrafine-Grained and Nanostructured TiNi Alloys, Mater. Today: Proc., 2017, 4(3), p 4825–4829. https://doi.org/10.1016/j.matpr.2017.04.078

    Article  Google Scholar 

  11. I. Khmelevskaya, V. Komarov, R. Kawalla, S. Prokoshkin and G. Korpala, Effect of Biaxial Isothermal Quasi-Continuous Deformation on Structure and Shape Memory Properties of Ti-Ni Alloys, J. Mater. Eng. Perform, 2017, 26(8), p 4011–4019. https://doi.org/10.1007/s11665-017-2841-1

    Article  CAS  Google Scholar 

  12. S. Prokoshkin, I. Khmelevskaya, V. Andreev, R. Karelin, V. Komarov and A. Kazakbiev, Manufacturing of Long-Length Rods of Ultrafine-Grained Ti-Ni Shape Memory Alloys, Mater. Sci. Forum, 2018, 918, p 71–76.

    Article  Google Scholar 

  13. A.A. Churakova and D.V. Gunderov, Microstructure and Mechanical Properties of the Ultrafine-Grained TiNi Alloy After Multiple Martensitic Transformations and Subsequent Aging, IOP Conf. Ser. Mater. Sci. Eng, 2019 https://doi.org/10.1088/1757-899X/672/1/012025

    Article  Google Scholar 

  14. V. Komarov, I. Khmelevskaya, R. Karelin, R. Kawalla, G. Korpala, U. Prahl, V. Yusupov and S. Prokoshkin, Deformation Behavior, Structure, and Properties of an Aging Ti-Ni Shape Memory Alloy after Compression Deformation in a Wide Temperature Range, JOM, 2021 https://doi.org/10.1007/s11837-020-04508-7

    Article  Google Scholar 

  15. R.Z. Valiev, A.V. Korznikov and R.R. Mulyukov, Structure and Properties of Ultrafine-Grained Materials Produced by Severe Plastic Deformation, Mater. Sci. Eng. A., 1993, 168(2), p 141–148. https://doi.org/10.1016/0921-5093(93)90717-S

    Article  Google Scholar 

  16. R. Valiev, Y. Estrin, Z. Horita, T. Langdon, M. Zehetbauer and Y. Zhu, Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation, JOM, 2006, 58, p 33–39. https://doi.org/10.1007/s11837-006-0213-7

    Article  Google Scholar 

  17. I. Sabirov, N. Enikeev, M. Murashkin, R. Valiev, Bulk Nanostructured Materials with Multifunctional Properties, New York: Springer, 2015, 118 p, https://doi.org/https://doi.org/10.1007/978-3-319-19599-5

  18. V. Brailovski, S. Prokoshkin, I. Khmelevskaya, K. Inaekyan, V. Demers, S. Dobatkin and E. Tatyanin, Structure and Properties of the Ti-500 at% Ni Alloy After Strain Hardening and Nanocrystallizing, Mater. Trans, 2006 https://doi.org/10.2320/matertrans.47.795

    Article  Google Scholar 

  19. V. Komarov, I. Khmelevskaya, R. Karelin, S. Prokoshkin, M. Zaripova, M. Isaenkova, G. Korpala and R. Kawalla, Effect of Biaxial Cyclic Severe Deformation on Structure and Properties of Ti-Ni Alloys, J. Alloys Compd, 2019, 797, p 842–848. https://doi.org/10.1016/j.jallcom.2019.05.127

    Article  CAS  Google Scholar 

  20. IYu. Khmelevskaya, R. Kawalla, S.D. Prokoshkin and V.S. Komarov, Effect of Multiaxial Deformation Max-Strain on the Structure and Properties of Ti-Ni Alloy, IOP Conf. Ser. Mater. Sci. Eng., 2014, 63, p 012108. https://doi.org/10.1088/1757-899X/63/1/012108

    Article  CAS  Google Scholar 

  21. I. Khmelevskaya, V. Komarov, R. Kawalla, S. Prokoshkin and G. Korpala, Features of Ti-Ni Alloy Structure Formation Under Multi-Axial Quasi-Continuous Deformation and Post-Deformation Annealing, Mater. Today: Proc., 2017, 4(3), p 4830–4835. https://doi.org/10.1016/j.matpr.2017.04.079

    Article  Google Scholar 

  22. R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater Sci., 2006, 51, p 881–981. https://doi.org/10.1016/j.pmatsci.2006.02.003

    Article  CAS  Google Scholar 

  23. H. Shahmir, M. Nili-Ahmadabadi, M. Mansouri-Arani and T.G. Langdon, The Processing of NiTi Shape Memory Alloys by Equal-Channel Angular Pressing at Room Temperature, Mater. Sci. Eng. A., 2013, 576, p 178–184. https://doi.org/10.1016/j.msea.2013.04.001

    Article  CAS  Google Scholar 

  24. IYu. Khmelevskaya, R.D. Karelin, S.D. Prokoshkin, M.G. Isaenkova, Yu.A. Perlovich, V.A. Fesenko, V.S. Komarov and M.M. Zaripova, Features of Nanostructure and Functional Properties Formation in Ti-Ni Shape Memory Alloys Subjected to Quasi-Continuous Equal Channel Angular Pressing, IOP Conf. Ser. Mater. Sci. Eng, 2019 https://doi.org/10.1088/1757-899X/503/1/012024

    Article  Google Scholar 

  25. G. Raab, The Innovation Potential of ECAP Techniques of Severe Plastic Deformation, IOP Conf Ser. Mater. Sci. Eng, 2014 https://doi.org/10.1088/1757-899X/63/1/012009

    Article  Google Scholar 

  26. S.N. Lezhnev, I.E. Volokitina and D.V. Kuis, Evolution of Microstructure and Mechanical Properties of Composite Aluminum-Based Alloy during ECAP, Phys. Met. Metallogr., 2018, 119(8), p 810–815. https://doi.org/10.1134/S0031918X18040129

    Article  CAS  Google Scholar 

  27. V.G. Pushin, R.Z. Valiev, Y.T. Zhu, S.D. Prokoshkin, D.V. Gunderov and L.I. Yurchenko, Effect of Equal-Channel Angular Pressing and Repeated Rolling on Structure Phase Transformations and Properties of TiNi Shape Memory Alloys, Mater. Sci. Forum, 2006, 503–504, p 539–544.

    Article  Google Scholar 

  28. IYu. Khmelevskaya, S.D. Prokoshkin, I.B. Trubitsyna, M.N. Belousov, S.V. Dobatkin, E.V. Tatyanin, A.V. Korotitskiy, V. Brailovski, V.V. Stolyarov and E.A. Prokofiev, Structure and Properties of Ti–Ni-Based Alloys After Equal-Channel Angular Pressing and High-Pressure Torsion, Mater. Sci. Eng. A, 2008, 481–482, p 119–122. https://doi.org/10.1016/j.msea.2007.02.157

    Article  CAS  Google Scholar 

  29. V.V. Stolyarov, E.A. Prokofyev, S.D. Prokoshkin, S.V. Dobatkin, I.B. Trubitsyina, I.Y. Khmelevskaya, V.G. Pushin and R.Z. Valiev, Structure Features, Mechanical Properties and Shape Memory Effect in Ti-Ni Alloy, Processed by ECAP, Phys. Met. Metallogr, 2005, 100, p 608–618.

    Google Scholar 

  30. IYu. Khmelevskaya, R.D. Karelin, S.D. Prokoshkin, V.A. Andreev, V.S. Yusupov, M.M. Perkas, V.V. Prosvirnin, A.E. Shelest and V.S. Komarov, Effect of the Quasi-Continuous Equal-Channel Angular Pressing on the Structure and Functional Properties of Ti-Ni-Based Shape-Memory Alloys, Phys. Met. Metallogr, 2017, 118, p 279–287. https://doi.org/10.1134/S0031918X17030073

    Article  CAS  Google Scholar 

  31. H.C. Lin and S.K. Wu, Strengthening Effect on Shape Recovery Characteristic of the Equiatomic TiNi Alloy, Scripta Metall. Mater, 1992, 26, p 59–62. https://doi.org/10.1016/0956-716X(92)90369-P

    Article  CAS  Google Scholar 

  32. V.G. Pushin, A.I. Lotkov, Y.R. Kolobov, R.Z. Valiev, E.F. Dudarev, N.N. Kuranova, A.P. Dyupin, D.V. Gunderov and G.P. Bakach, On the Nature of Anomalously High Plasticity of High-Strength Titanium Nickelide Alloys with Shape-Memory Effects: I. Initial Structure and Mechanical Properties, Phys. Met. Metallogr, 2008, 106(5), p 520–530. https://doi.org/10.1134/S0031918X08110124

    Article  Google Scholar 

  33. E.F. Dudarev, R.Z. Valiev, Yu.R. Kolobov, A.I. Lotkov, V.G. Pushin, G.P. Bakach, D.V. Gunderov, A.P. Dyupin and N.N. Kuranova, On the Nature of Anomalously High Plasticity of High-Strength Titanium Nickelide Alloys with Shape-Memory Effects: II. Mechanisms of Plastic Deformation Upon Isothermal Loading, Phys. Met. Metallogr, 2009, 107(3), p 298–311. https://doi.org/10.1134/S0031918X09030120

    Article  Google Scholar 

  34. E.P. Ryklina, S.D. Prokoshkin and A.A. Chernavina, Peculiarities of Implementation of Abnormally High Shape Memory Effects in Thermomechanically Treated Ti-Ni Alloys, Inorg. Mater. Appl. Res., 2013, 4(4), p 348–355. https://doi.org/10.1134/S2075113313040096

    Article  Google Scholar 

  35. E. Ryklina, S. Prokoshkin and A. Kreytsberg, Abnormally High Recovery Strain in Ti–Ni-Based Shape Memory Alloys, J. Alloys Compd., 2013, 577(1), p 255–258. https://doi.org/10.1016/j.jallcom.2012.02.138

    Article  CAS  Google Scholar 

  36. S. Prokoshkin, V. Brailovski, K. Inaekyan, V. Demers, I. Khmelevskaya, S. Dobatkin and E. Tatyanin, Structure and Properties of Severely Cold-Rolled and Annealed Ti-Ni Shape Memory Alloys, Mater. Sci. Eng. A., 2008, 481–482, p 114–118. https://doi.org/10.1016/j.msea.2007.02.150

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation in the framework of the State Task (project code 0718-2020-0030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Karelin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karelin, R.D., Khmelevskaya, I.Y., Komarov, V.S. et al. Effect of Quasi-Continuous Equal-Channel Angular Pressing on Structure and Properties of Ti-Ni Shape Memory Alloys. J. of Materi Eng and Perform 30, 3096–3106 (2021). https://doi.org/10.1007/s11665-021-05625-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05625-3

Keywords

Navigation