Skip to main content
Log in

Effect of the B4C content on the structure and thermal expansion coefficient of the Al–5% Cu alloy-based metal-matrix composite material

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The Al–5% Cu alloy-based metal-matrix composite materials reinforced with 5-μm B4C particles have been produced using mechanical mixing-in method. A process of addition of the B4C particles into the melt has been developed. A homogeneous distribution of the B4C reinforcing particles in the metal-matrix composite matrix was obtained. Using X-ray diffraction analysis, the formation of Al3BC and AlB2 phases has been revealed at the interphase matrix/particle boundary, which indicates a good interaction in the phases. With increasing B4C content in the matrix alloy, an insignificant increase in the porosity (from 1 to 3.1%) occurs. The average linear thermal-expansion coefficient is reduced from 24.5 to 22.6 × 10–6 K–1 in the temperature range of 20–100°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Russian State Standard GOST 1583-93: Cast Aluminum Alloys. Technical Requirements (Izd-vo Standartov, Minsk, 2000).

  2. Registration Record of Aluminum Association Alloy Designations and Chemical Composition Limits for Aluminum Alloys in the Form of Casting and Ingot (The Aluminum Association Inc. Revised: January 1989).

  3. J. G. Kaufman, Properties of Aluminum Alloys. Tensile, Creep, and Fatigue Data at High and Low Temperatures (The Aluminum Association Inc. and ASM International, 2006), p. 311.

    Google Scholar 

  4. ASM HANDBOOK. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (The Materials Information Company, 2010), Vol. 2.

  5. V. S. Zolotorevskii and N. A. Belov, Metallography of Cast Aluminum Alloys (MISiS, Moscow, 2005) [in Russian].

    Google Scholar 

  6. W. A. Uju and I. N. A. Oguocha, “A study of thermal expansion of Al–Mg alloy composites containing fly ash,” Mater. Design 33, 503–509 (2012).

    Article  Google Scholar 

  7. C. Park, C. Kim, M. Kim, and C. Lee, “The effect of particulate size and volume fraction of the reinforced phases on the linear thermal expansion in the Al–Si–SiCp System,” Mater. Chem. Phys. 88, 46–52 (2004).

    Article  Google Scholar 

  8. N. Chen, H. Zhang, G. Mu, and M. Gu, “The effect of internal stress on the thermal expansion coefficient of Al/SiC composite,” J. Compos. Mater. 41, 2691–2699 (2007).

    Article  Google Scholar 

  9. L. Z. Zhao, M. J. Zhao, X. M. Cao, C. Tian, W. P. Hu, and J. S. Zhang, “Thermal expansion of novel hybrid SiC foam–SiC particles–Al composites,” Compos. Sci. Technol. 67, 3404–3408 (2007).

    Article  Google Scholar 

  10. D. K. T. Balch, A. Mortensen, and S. Suresh, “Thermal expansion of metals reinforced with ceramic particles and microcellular foams,” Metall. Mater. Trans., A 27, 3700–3717 (1996).

    Article  Google Scholar 

  11. S. Elomari, R. Boukhili, and D. J. Lloyd, “Thermal expansion studies of prestrained Al2O/Al metal matrix composite,” Acta Mater. 44, 1873–1882 (1996).

    Article  Google Scholar 

  12. T. Huber, H. P. Degischer, G. Lefranc, and T. Schmitt, “Thermal expansion studies on aluminum-matrix composites with different reinforcement architecture of SiC particles,” Compos. Sci. Technol. 66, 2206–2217 (2006).

    Article  Google Scholar 

  13. Zhibo Lei, Ke Zhao, Yiguang Wang, and Linan Au, “Thermal expansion of Al matrix composites reinforced with hybrid micro-/nano–sized Al2O3 particles,” J. Mater. Sci. Technol. 30, 61–64 (2014).

    Article  Google Scholar 

  14. M. R. Kim and Y. Choi, “Performance tests of Mn-added aluminum heat pipe with micro-sized inner fins and thermal fluid for cooling electronic device,” Phys. Met. Metallogr. 115 (13), 1362–1365 (2014).

    Article  Google Scholar 

  15. V. A. Popov and V. V. Cherdyntsev, “Formation of a nanodispersed metal-matrix structure during a combined high-energy mechanical alloying of powders of aluminum-based SiC-containing alloys,” Phys. Met. Metallogr. 107, 45–52 (2009).

    Article  Google Scholar 

  16. M. Aydin, R. Gürler, and M. Türker, “The diffusion welding of 7075Al–3% SiC particles reinforced composites,” Phys. Met. Metallogr. 107, 206–210 (2009).

    Article  Google Scholar 

  17. C. S. Ramesh, R. Keshavamurthy, and J. Madhusudhan, “Fatigue behavior of Ni–P coated Si3N4 reinforced Al6061 composites,” Proc. Mater. Sci. 6, 1444–1454 (2014).

    Article  Google Scholar 

  18. C. S. Ramesh, R. Keshavamurthy, B. H. Channabasappa, and A. Abrar, “Microstructure and mechanical properties of Ni–P coated Si3N4 reinforced Al6061 composites,” Mater. Sci. Eng., A 502, 99–106 (2013).

    Article  Google Scholar 

  19. A. Canakci, F. Arslan, and T. Varol, “Effect of volume fraction and size of B4C particles on production and microstructure properties of B4C reinforced aluminum alloy composites,” Int. J. Cast Met. Res. 29, 954–960 (2013).

    Google Scholar 

  20. M. F. Ibrahim, H. R. Ammar, A. M. Samuel, M. S. Soliman, and F. H. Samuel, “Metallurgical parameters controlling matrix/B4C particulate interaction in aluminum–boron carbide metal matrix composites,” Int. J. Cast Met. Res. 26, 364–373 (2013).

    Article  Google Scholar 

  21. M. F. Ibrahim, H. R. Ammar, A. M. Samuel, M. S. Soliman, A. Almajid, and F. H. Samuel, “Mechanical properties and fracture of Al–15% B4C based metal matrix composites,” Int. J. Cast Met. Res. 27, 7–14 (2014).

    Article  Google Scholar 

  22. G. Bonnet, V. Rohr, X.-G. Chen, J.-L. Bernier, R. Chiocca, and H. Issard, “Use of Alcan’s Al–B4C metal matrix composites as neutron absorber material in TN,” Int. Transp. Storage casks. Packaging, Transp., Stor., Secur. Radioact. Mater. 20, 98–102 (2009).

    Google Scholar 

  23. J. Lai, Z. Zhang, and X.-G. Chen, “Effect of Sc and Zr alloying on microstructure and precipitation evolution of as cast Al–B4C metal matrix composites,” Mater. Sci. Tech. 28, 1276–1286 (2012).

    Article  Google Scholar 

  24. K. S. Thirumalai, M. Uthayakumar, and S. Aravindan, “Analysis of dry sliding friction and wear behavior of AA6351–SiC–B4C composites using grey relational analysis,” Tribol.—Mater., Surf., Interfaces 8, 187–193 (2014).

    Article  Google Scholar 

  25. C.-J. Shi, Z. Zhang, and X.-G. Chen, “Characterisation of Al–B4C composite microstructures and their effect on fluidity,” Canad. Metallurg. Quart. 51, 462–470 (2012).

    Article  Google Scholar 

  26. H. S. Chen, W. X. Wang, Y. L. Li, P. Zhang, H. H. Nie, and Q. C. Wu, “The design, microstructure and tensile properties of B4C particulate reinforced 6061 Al neutron absorber composites,” J. Alloys Compd. 632, 23–29 (2015).

    Article  Google Scholar 

  27. A. V. Pozdnyakov, V. S. Zolotorevskii, R. Yu. Barkov, A. Lotfi, and M. G. Khomutov, “Investigation of structure and phase composition of Al–B4C powder master alloys,” Tekhnol. Legkikh Splavov, No. 1, 13–20 (2015).

    Google Scholar 

  28. A. Yu. Churyumov, M. G. Khomutov, A. A. Tsarkov, A. V. Pozdniakov, A. N. Solonin, and E. L. Mukhanov, “Study of the structure and mechanical properties of corrosion-resistant steel with a high concentration of boron at elevated temperatures,” Phys. Met. Metallogr. 115, 809–813 (2014).

    Article  Google Scholar 

  29. L. L. Pyatakova, M. V. Mozharov, M. A. Sirotkina, and T. A. Dyuzheva, “Effect of boron on the cold brittleness of medium–carbon steel,” Metal Sci. Heat Treat., 13, 152–154 (1971).

    Article  Google Scholar 

  30. R. K. Guseinov, “Properties of structural steel doped with boron,” Metal Sci. Heat Treat., 33, 536–540 (1991).

    Article  Google Scholar 

  31. A. Ya. Zaslavskii and T. L. Mushtakova, “Ductile properties of boron steels for cold die forging,” Met Sci. and Heat Treat., 34, 178–183 (1992).

    Article  Google Scholar 

  32. V. S. Zolotorevskiy, A. V. Pozdniakov, and A. Yu. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 113, 1052–1060 (2012).

    Article  Google Scholar 

  33. A. V. Pozdniakov and V. S. Zolotorevskiy, “Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 27, 193–198 (2014).

    Article  Google Scholar 

  34. Russian State Standard GOST 11068-2001, Primary Aluminum (Izd-vo Standartov, Moscow, 2002).

  35. Russian State Standard GOST 859-2001, Copper. Grades (Izd-vo Standartov, Moscow, 2001).

  36. Qiaoli Lin, Ping Shen, Feng Qiu, Dan Zhang, and Qichuan Jiango, “Wetting of polycrystalline B4C by molten Al at 1173–1473 K,” Scr. Mater. 60, 960–963 (2009).

    Article  Google Scholar 

  37. Haobo Wu, Fanhao Zangn, Tiechui Yuan, Fuqin Zhang, and Xiang Xiong, “Wettability of 2519 Al on B4C at 1000–1250°C and mechanical properties of infiltrated B4C–2519Al composites,” Ceram. Int. 40, 2073–2081 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pozdniakov.

Additional information

Original Russian Text © A.V. Pozdniakov, A. Lotfy, A. Qadir, V.S. Zolotorevskiy, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 8, pp. 811–816.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozdniakov, A.V., Lotfy, A., Qadir, A. et al. Effect of the B4C content on the structure and thermal expansion coefficient of the Al–5% Cu alloy-based metal-matrix composite material. Phys. Metals Metallogr. 117, 783–788 (2016). https://doi.org/10.1134/S0031918X16060107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16060107

Keywords

Navigation