Skip to main content
Log in

Experimental Setup Based on a Quantum Cascade Laser Tunable in the Wavelength Range of 5.3–12.8 µm for Spectral Analysis of Human Exhaled Air

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

An experimental setup and a method for analyzing multicomponent gas mixtures, including human-exhaled air, have been presented. The installation consists of a quantum cascade laser that is tunable in the wavelength range of 5.3–12.8 µm and has a peak power of 150 mW and a multi-pass Herriot gas cell that allows obtaining an optical path of up to 76 m. The registration time of a single spectrum is about 50 ms. For acetone and ethanol which are potential biomarkers of some human diseases the sensitivity threshold at the sub-ppm level has been experimentally determined. A system of sample preparation and pre-drying that allows analyzing both multicomponent gas mixtures and the air exhaled by a person has been proposed. The variants of application of the described installation in biomedical applications has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. A. Ansari, A. Kosov, A. C. Reddy, N. R. Aeddula, and A. K. Vaikuntam, J. Renal Med. 2, 2 (2018).

    Google Scholar 

  2. I. E. Khat’kov, Yu. A. Barsukov, A. O. Atroshchenko, V. A. Aliev, D. V. Kuz’michev, R. I. Tamrazov, and S. S. Gordeev, Onkol. Koloproktol., No. 2, 35 (2012).

  3. E. van Mastrigt, A. Reyes-Reyes, K. Brand, N. Bhattacharya, H. P. Urbach, A. P. Stubbs, J. C. de Jongste, and M. W. Pijnenburg, J. Breath Res. 10, 026003 (2016). https://doi.org/10.1088/1752-7155/10/2/026003

    Article  ADS  Google Scholar 

  4. E. V. Stepanov and S. G. Kasoev, Opt. Spectrosc. 126, 736 (2019). https://doi.org/10.1134/s0030400x19060249

    Article  ADS  Google Scholar 

  5. A. L. Wallace, E. D. Pellizzari, T. D. Hartwell, C. M. Sparacino, L. S. Sheldon, and H. Zelon, Atmos. Environ. 19, 1651 (1985). https://doi.org/10.1016/0004-6981(85)90217-3

    Article  ADS  Google Scholar 

  6. V. Ruzsányi and M. P. Kalapos, J. Breath Res. 11, 024002 (2017). https://doi.org/10.1088/1752-7163/aa66d3

    Article  ADS  Google Scholar 

  7. N. Alizadeh, H. Jamalabadi, and F. Tavoli, IEEE Sensors J. 20, 5 (2020). https://doi.org/10.1109/jsen.2019.2942693

    Article  ADS  Google Scholar 

  8. R. Selvaraj, N. J. Vasa, S. M. S. Nagendra, and B. Mizaikoff, Molecules 25, 2227 (2020). https://doi.org/10.3390/molecules25092227

    Article  Google Scholar 

  9. A. Gharra, Y. Y. Broza, G. Yu, W. Mao, D. Shen, L. Deng, C. Wu, Q. Wang, X. Sun, J. Huang, Z. Xuan, B. Huang, S. Wu, Y. Milyutin, V. Kloper-Weidenfeld, and H. Haick, Cancer Commun. 40, 273 (2020). https://doi.org/10.1002/cac2.12030

    Article  Google Scholar 

  10. E. V. Stepanov, Tr. IOFAN 61, 5 (2005).

    Google Scholar 

  11. S. I. Lukash, Comput. Means Networks Syst. 9, 62 (2010).

    Google Scholar 

  12. M. Righettoni, A. Tricoli, and S. E. Pratsinis, Anal. Chem. 82, 3581 (2010). https://doi.org/10.1021/ac902695n

    Article  Google Scholar 

  13. A. Schwaighofer, M. Brandstetter, and B. Lendl, Chem. Soc. Rev. 46, 5903 (2017). https://doi.org/10.1039/c7cs00403f

    Article  Google Scholar 

  14. C. Wang and P. Sahay, Sensors 9, 8230 (2009). https://doi.org/10.3390/s91008230

    Article  ADS  Google Scholar 

  15. D. Smith, T. Wang, J. Sulé-Suso, P. Španěl, and A. E. Haj, Rapid Commun. Mass Spectrom. 17, 845 (2003). https://doi.org/10.1002/rcm.984

    Article  ADS  Google Scholar 

  16. A. Hansel, A. Jordan, R. Holzinger, P. Prazeller, W. Vogel, and W. Lindinger, Int. J. Mass Spectrom. Ion Process. 149–150, 609 (1995). https://doi.org/10.1016/0168-1176(95)04294-u

    Article  ADS  Google Scholar 

  17. C. di Natale, A. Macagnano, E. Martinelli, R. Paolesse, G. D’Arcangelo, C. Roscioni, A. Finazzi-Agro, and A. D’Amico, Biosens. Bioelectron. 18, 1209 (2003). https://doi.org/10.1016/s0956-5663(03)00086-1

    Article  Google Scholar 

  18. S. Mendis, P. A. Sobotka, and D. E. Euler, Clin. Chem. 40, 1485 (1994). https://doi.org/10.1093/clinchem/40.8.1485

    Article  Google Scholar 

  19. R. Centeno, J. Mandon, F. Harren, and S. Cristescu, Photonics 3, 22 (2016). https://doi.org/10.3390/photonics3020022

    Article  Google Scholar 

  20. L. C. Short, R. Frey, and T. Benter, Appl. Spectrosc. 60, 217 (2006). https://doi.org/10.1366/000370206776023241

    Article  ADS  Google Scholar 

  21. Yu. R. Shaltaeva, Ion Mobility Spectrometry for Various Applications, Proceedings of the 15th Conference Youth in Science (RFYaTs-VNIIEF, Sarov, 2016), p. 22.

  22. F. Yu. Kopylov, A. L. Syrkin, P. Sh. Chomakhidze, A. A. Bykova, Yu. R. Shaltaeva, V. V. Belyakov, V. S. Pershenkov, N. N. Samotaev, A. V. Golovin, V. K. Vasil’ev, E. K. Malkin, E. A. Gromov, I. A. Ivanov, D. Yu. Lipatov, and D. Yu. Yakovlev, Klin. Med. 91 (10), 16 (2013).

    Google Scholar 

  23. S. V. Bashkin, A. O. Karfidov, V. N. Kornienko, M. V. Lel’kov, A. I. Mironov, A. N. Morozov, S. I. Svetlichnyi, S. E. Tabalin, and I. L. Fufurin, Opt. Spectrosc. 121, 449 (2016). https://doi.org/10.1134/s0030400x16090058

    Article  ADS  Google Scholar 

  24. L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, Appl. Phys. B 72, 859 (2001). https://doi.org/10.1007/s003400100562

    Article  ADS  Google Scholar 

  25. R. Ghorbani and F. M. Schmidt, Appl. Phys. B 123, 123 (2017). https://doi.org/10.1007/s00340-017-6715-x

    Article  Google Scholar 

  26. S. K. Sengupta, J. M. Farnham, and J. E. Whitten, J. Chem. Educ. 82, 1399 (2005). https://doi.org/10.1021/ed082p1399

    Article  Google Scholar 

  27. P. L. Kebabian, E. C. Wood, S. C. Herndon, and A. Freedman, Environ. Sci. Technol. 42, 6040 (2008). https://doi.org/10.1021/es703204j

    Article  ADS  Google Scholar 

  28. K. Namjou, P. J. McCann, and W. T. Potter, in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, Denver, USA, Proc. SPIE 3758, 74 (1999). https://doi.org/10.1117/12.366463

    Article  ADS  Google Scholar 

  29. K. L. Moskalenko, A. I. Nadezhdinskii, and I. A. Adamovskaya, Infrared Phys. Technol. 37, 181 (1996). https://doi.org/10.1016/1350-4495(95)00097-6

    Article  ADS  Google Scholar 

  30. F. Capasso, Opt. Eng. 49, 111102 (2010). https://doi.org/10.1117/1.3505844

    Article  ADS  Google Scholar 

  31. F. K. Tittel and R. Lewicki, in Semiconductor Lasers: Fundamentals and Applications, Ed. by A. Baranov and E. Tournié (Woodhead, Cambridge, 2013), p. 579. https://doi.org/10.1533/9780857096401.3.579

    Book  Google Scholar 

  32. J. B. McManus, Opt. Eng. 49, 111124 (2010). https://doi.org/10.1117/1.3498782

    Article  ADS  Google Scholar 

  33. C. Li, L. Dong, C. Zheng, and F. K. Tittel, Sens. Actuators, B 232, 188 (2016). https://doi.org/10.1016/j.snb.2016.03.141

    Article  Google Scholar 

  34. T. Tsai and G. Wysocki, Appl. Phys. B 100, 243 (2010). https://doi.org/10.1007/s00340-009-3865-5

    Article  ADS  Google Scholar 

  35. J. B. McManus, P. L. Kebabian, and M. S. Zahniser, Appl. Opt. 34, 3336 (1995). https://doi.org/10.1364/ao.34.003336

    Article  ADS  Google Scholar 

  36. S. M. Chernin, Multipass Systems in Optics and Spectroscopy (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  37. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, Chem. Phys. Lett. 487, 1 (2010). https://doi.org/10.1016/j.cplett.2009.12.073

    Article  ADS  Google Scholar 

  38. E. R. Deutsch, P. Kotidis, N. Zhu, A. K. Goyal, J. Ye, A. Mazurenko, M. Norman, K. Zafiriou, M. Baier, and R. Connors, in Chemical and Biological Sensing Technologies XI, Baltimore, USA, Proc. SPIE 9106, 91060A (2014). https://doi.org/10.1117/12.2058544

    Article  ADS  Google Scholar 

  39. K. K. Schwarm, C. L. Strand, V. A. Miller, and R. M. Spearrin, Appl. Phys. B 126, 126 (2019).https://doi.org/10.1007/%2Fs00340-019-7358-x

  40. J. Mandon, M. Högman, P. J. F. M. Merkus, J. van Amsterdam, F. J. M. Harren, and S. M. Cristescu, J. Biomed. Opt. 17, 017003 (2012). https://doi.org/10.1117/1.JBO.17.1.017003

    Article  ADS  Google Scholar 

  41. J. Manne, O. Sukhorukov, W. Jäger, and J. Tulip, Appl. Opt. 45, 9230 (2006). https://doi.org/10.1364/AO.45.009230

    Article  ADS  Google Scholar 

  42. F. Nadeem, J. Mandon, A. Khodabakhsh, S. M. Cristescu, and F. J. Harren, Sensors 18, 2050 (2018).

    Article  ADS  Google Scholar 

  43. J. van den Broek, S. Abegg, S. E. Pratsinis, and A. T. Güntner, Nat. Commun. 10, 1 (2019). https://doi.org/10.1038/s41467-019-12223-4

    Article  Google Scholar 

  44. A. Rydosz, E. Maciak, K. Wincza, and S. Gruszczynski, Sens. Actuators, B 237, 876 (2016). https://doi.org/10.1016/j.snb.2016.06.168

    Article  Google Scholar 

  45. A. S. Tabalina, D. R. Anfimov, I. L. Fufurin, and I. S. Golyak, in Biomedical Spectroscopy, Microscopy, and Imaging, Proc. SPIE 11359, 113591J (2020). https://doi.org/10.1117/12.2555042

    Article  Google Scholar 

  46. A. N. Morozov, S. I. Svetlichnyi, and I. L. Fufurin, Vestn. MGTU im. N.E. Baumana, Ser.: Estestv. Nauki., No. 2, 3 (2007).

  47. I. L. Fufurin, I. S. Golyak, D. R. Anfimov, A. S. Tabalina, E. R. Kareva, A. N. Morozov, and P. P. Demkin, in Optics in Health Care and Biomedical Optics X, Proc. SPIE 11553, 115531G (2020). https://doi.org/10.1117/12.2584043

    Article  Google Scholar 

  48. J. Acquarelli, T. van Laarhoven, J. Gerretzen, T. N. Tran, L. M. C. Buydens, and E. Marchiori, Anal. Chim. Acta 954, 22 (2017). https://doi.org/10.1016/j.aca.2016.12.010

    Article  Google Scholar 

  49. X. Fan, W. Ming, H. Zeng, Z. Zhang, and H. Lu, Analyst 144, 1789 (2019). https://doi.org/10.1039/c8an02212g

    Article  ADS  Google Scholar 

  50. P. J. Mazzone, J. Hammel, R. Dweik, J. Na, C. Czich, D. Laskowski, and T. Mekhail, Thorax 62, 565 (2007). https://doi.org/10.1136/thx.2006.072892

    Article  Google Scholar 

  51. I. V. Kochikov, A. N. Morozov, S. I. Svetlichnyi, and I. L. Fufurin, Opt. Spectrosc. 106, 666 (2009).

    Article  ADS  Google Scholar 

  52. Y. Sakumura, Y. Koyama, H. Tokutake, T. Hida, K. Sato, T. Itoh, T. Akamatsu, and W. Shin, Sensors 17, 287 (2017). https://doi.org/10.3390/s17020287

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by RFBR grant 18-29-02024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shcherbakova.

Ethics declarations

This article does not contain any studies involving human participants performed by any of the authors.

Conflict of interest. The authors state that they have no conflicts of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakova, A.V., Anfimov, D.R., Fufurin, I.L. et al. Experimental Setup Based on a Quantum Cascade Laser Tunable in the Wavelength Range of 5.3–12.8 µm for Spectral Analysis of Human Exhaled Air. Opt. Spectrosc. 129, 830–837 (2021). https://doi.org/10.1134/S0030400X21060151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X21060151

Keywords:

Navigation