Skip to main content
Log in

Dynamic Polarizability of a Negatively Charged Hydrogen Ion

  • SPECTROSCOPY AND PHYSICS OF ATOMS AND MOLECULES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The dynamic polarizability of a negatively charged hydrogen ion is calculated using a correlation-consistent basis set with high diffuseness. The obtained results are close to the results obtained by the method of summation over pseudostates. It is also shown that the density functional theory calculations do not allow one to achieve highly accurate results because of the large size of negative ions compared to both positive ions and neutral atoms (molecules).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. S. W. Massey, Negative Ions (Cambridge Univ. Press, Cambridge, 2011).

    Google Scholar 

  2. F. W. King, Can. J. Phys. 53, 2502 (1975). https://doi.org/10.1139/p75-303

    Article  ADS  Google Scholar 

  3. I. J. Berson, J. Phys. B: At. Mol. Opt. Phys. 8, 3078 (1975). https://doi.org/10.1088/0022-3700/8/18/025

    Article  ADS  Google Scholar 

  4. B. A. Zon, Sov. Tech. Phys. 21, 507 (1976).

    Google Scholar 

  5. Polarization Bremsstrahlung, Ed. by V. N. Tsytovich and I. M. Oiringel (Springer, New York, 1992; Nauka, Moscow, 1987).

  6. V. Astapenko, Polarization Bremsstrahlung on Atoms, Plasmas, Nanostructures and Solids, Vol. 72 of Springer Series on Atomic, Optical, and Plasma Physics (Springer, Berlin, Heidelberg, 2013).

  7. A. V. Korol and A. V. Solovyov, Polarization Bremsstrahlung, Vol. 80 of Springer Series on Atomic Optical and Plasma Physics (Springer, New York, 2014).

  8. P. A. Golovinskii, Opt. Spectrosc. 55, 655 (1983).

    ADS  Google Scholar 

  9. P. A. Golovinskii and I. Y. Kiyan, Opt. Spectrosc. 59, 593 (1985).

    ADS  Google Scholar 

  10. P. A. Golovinskii, Opt. Spectrosc. 84, 723 (1998).

    Google Scholar 

  11. V. E. Chernov, I. Y. Kiyan, H. Helm, and B. A. Zon, Phys. Rev. A 71, 033410 (2005). https://doi.org/10.1103/PhysRevA.71.033410

    Article  ADS  Google Scholar 

  12. A. Sommerfeld, Atombau und Spektrallinien (Friedr. Vieweg und Sohn, Braunschweig, 1939), Vol. 2.

    MATH  Google Scholar 

  13. H. Bethe and W. Heitler, Proc. R. Soc. London, Ser. A 146, 83 (1934). https://doi.org/10.1098/rspa.1934.0140

    Article  ADS  Google Scholar 

  14. F. Sauter, Ann. Phys. 401, 217 (1931). https://doi.org/10.1002/andp.19314010205

    Article  Google Scholar 

  15. P. A. Golovinskii and B. A. Zon, Sov. Phys. Tech. Phys. 25, 1076 (1980).

    Google Scholar 

  16. V. de la Luz, A. Lara, and J.-P. Raulin, Astrophys. J. 737, 1 (2011). https://doi.org/10.1088/0004-637X/737/1/1

    Article  ADS  Google Scholar 

  17. V. de la Luz, J.-P. Raulin, and A. Lara, Astrophys. J. 762, 84 (2013). doi.org/https://doi.org/10.1088/0004-637X/762/2/84

    Article  ADS  Google Scholar 

  18. V. de la Luz, M. Chavez, E. Bertone, and G. Gimenez de Castro, Sol. Phys. 289, 2879 (2014). https://doi.org/10.1007/s11207-014-0511-0

    Article  ADS  Google Scholar 

  19. V. de la Luz, Astrophys. J. 825, 138 (2016). https://doi.org/10.3847/0004-637X/825/2/138

    Article  ADS  Google Scholar 

  20. R. M. Glover and F. Weinhold, J. Chem. Phys. 65, 4913 (1976). https://doi.org/10.1063/1.432967

    Article  ADS  Google Scholar 

  21. P. A. Golovinskii and B. A. Zon, Opt. Spectrosc. 45, 733 (1978).

    ADS  Google Scholar 

  22. S. Kar, Y.-S. Wang, Y. Wang, and Y. K. Ho, Int. J. Quantum Chem. 118 (7), e25515 (2018). https://doi.org/10.1002/qua.25515

    Article  Google Scholar 

  23. A. S. Kornev, K. I. Suvorov, V. E. Chernov, and B. A. Zon, Chem. Phys. Lett. 711, 42 (2018). https://doi.org/10.1016/j.cplett.2018.09.005

    Article  ADS  Google Scholar 

  24. V. E. Chernov, D. L. Dorofeev, I. Y. Kretinin, and B. A. Zon, Phys. Rev. A. 71, 022505 (2005). https://doi.org/10.1103/PhysRevA.71.022505

    Article  ADS  Google Scholar 

  25. B. A. Zon, I. Yu. Kretinin, and V. E. Chernov, Opt. Spectrosc. 101, 501 (2006). https://doi.org/10.1134/S0030400X06100018

    Article  ADS  Google Scholar 

  26. R. R. Valiev, A. A. Berezhnoy, A. D. Sidorenko, B. S. Merzlikin, and V. N. Cherepanov, Planet. Space Sci. 145, 38 (2017). https://doi.org/10.1016/j.pss.2017.07.011

    Article  ADS  Google Scholar 

  27. Y. Kalugina, D. Sunchugashev, and V. Cherepanov, Chem. Phys. Lett. 692, 184 (2018). https://doi.org/10.1016/j.cplett.2017.12.026

    Article  ADS  Google Scholar 

  28. R. R. Valiev, A. A. Berezhnoy, I. S. Gritsenko, B. S. Merzlikin, V. N. Cherepanov, T. Kurten, and C. Wöhler, Astron. Astrophys. 633, A39 (2020). https://doi.org/10.1051/0004-6361/201936230

    Article  ADS  Google Scholar 

  29. V. A. Terashkevich, E. A. Pazyuk, A. V. Stolyarov, and D. S. Wiebe, J. Quant. Spectrosc. Radiat. Transfer 234, 139 (2019). https://doi.org/10.1016/j.jqsrt.2019.06.017

    Article  ADS  Google Scholar 

  30. A. V. Zaitsevskii, L. V. Skripnikov, A. V. Kudrin, A. V. Oleinichenko, E. Eliav, and A. V. Stolyarov, Opt. Spectrosc. 124, 451 (2018). https://doi.org/10.21883/OS.2018.04.45739.268-17

    Article  ADS  Google Scholar 

  31. E. A. Konovalova, Yu. A. Demidov, and A. V. Stolyarov, Opt. Spectrosc. 125, 470 (2018). https://doi.org/10.21883/OS.2018.10.46693.98-18

    Article  ADS  Google Scholar 

  32. G. Maroulis, J. Chem. Phys. 108, 5432 (1998). https://doi.org/10.1063/1.475932

    Article  ADS  Google Scholar 

  33. G. Maroulis, J. Chem. Phys. 118, 2673 (2003). https://doi.org/10.1063/1.1535443

    Article  ADS  Google Scholar 

  34. M. Kállay and J. Gauss, J. Mol. Struct.: THEOCHEM 768, 71 (2006). https://doi.org/10.1016/j.theochem.2006.05.021

    Article  Google Scholar 

  35. Yu. N. Kalugina and V. N. Cherepanov, Atmos. Ocean Opt. 28, 406 (2015). https://doi.org/10.15372/AOO20150507

    Article  Google Scholar 

  36. T. Andersen, H. K. Haugen, and H. Hotop, J. Phys. Chem. Ref. Data 28, 1511 (1999). https://doi.org/10.1063/1.556047

    Article  ADS  Google Scholar 

  37. D. E. Woon and T. H. Dunning, J. Chem. Phys. 100, 2975 (1994). https://doi.org/10.1063/1.466439

    Article  ADS  Google Scholar 

  38. J. T. Broad and W. P. Reinhardt, Phys. Rev. A 14, 2159 (1976). https://doi.org/10.1103/PhysRevA.14.2159

    Article  ADS  Google Scholar 

  39. R. N. Hill, Phys. Rev. Lett. 38, 643 (1977). https://doi.org/10.1103/PhysRevLett.38.643

    Article  ADS  Google Scholar 

  40. A. Bürgers and E. Lindroth, Eur. Phys. J. D 10, 327 (2000). https://doi.org/10.1007/s100530050556

    Article  ADS  Google Scholar 

  41. J. C. Straton, Atoms 8 (2), 13 (2020). https://doi.org/10.3390/atoms8020013

    Article  ADS  Google Scholar 

  42. A. Dalgarno, in Perturbation Theory and Its Applications in Quantum Mechanics, Ed. by C. H. Wilcox (Wiley, New York, 1966), p. 145.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Voronezh State University for providing computing resources of the High-Performance Computer Center of Parallel Computing to perform calculations.

Funding

This work was supported by the Russian Science Foundation (grant no. 19-12-00095) in the part of CCSD calculations by the Ministry of Science and Higher Education of the Russian Federation (project no. FZGU-2020-0035) in the part of density functional theory calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kornev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornev, A.S., Chernov, V.E. & Zon, B.A. Dynamic Polarizability of a Negatively Charged Hydrogen Ion. Opt. Spectrosc. 129, 18–22 (2021). https://doi.org/10.1134/S0030400X21010100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X21010100

Keywords:

Navigation