Skip to main content
Log in

Magnetically Induced Transitions in Spectral Vicinity of the D2 Line of Cs Atoms: Giant Growth of Transition Probabilities and Different Asymptotic Behavior in Increasing Transverse Magnetic Field

  • SPECTROSCOPY AND PHYSICS OF ATOMS AND MOLECULES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Two types of magnetically induced (MI) transitions in cesium atoms were studied experimentally and theoretically. The MI transitions are forbidden in the absence of magnetic field. Probabilities of MI transitions rapidly grow with increase in magnetic field and can exceed those of transitions allowed in the absence of magnetic field. Asymptotic behavior of probabilities of MI transitions in strong magnetic fields is different. In the case of magnetically induced transitions of the first type (MI1), transition probabilities experience giant increase with increase in the applied magnetic field, and with a further increase of the magnetic field, the probabilities of these transitions tend to asymptotic large value. Probabilities of magnetically induced transitions of the second type (MI2) also experience giant increase with increase in the applied magnetic field. However, probabilities of such transitions tend to zero again with further increase in the magnetic field. It is demonstrated that measurement of the second derivative (SD) of absorption spectra of Cs vapor contained in a nanocell with thickness L = 426 nm corresponding to half the wavelength of the D2 line of cesium (λ = 852 nm) enables conducting Doppler-free spectroscopy. Narrow width of atomic lines and linear relation between the SD signal amplitudes and transition probabilities allows studying individual atomic transitions in an external transverse magnetic field with induction varying from 0.5 to 5.3 kG. In particular, four MI transitions were studied: two MI1 and two MI2 ones. Theoretical calculations agree well with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. Sargsyan, G. Hakhumyan, A. Papoyan, D. Sarkisyan, A. Atvars, and M. Auzinsh, Appl. Phys. Lett. 93, 021119 (2008).

    Article  ADS  Google Scholar 

  2. G. Hakhumyan, C. Leroy, R. Mirzoyan, Y. Pashayan-Leroy, and D. Sarkisyan, Eur. Phys. J. D 66, 119 (2012).

    Article  ADS  Google Scholar 

  3. A. Sargsyan, A. Tonoyan, G. Hakhumyan, A. Papoyan, E. Mariotti, and D. Sarkisyan, Laser Phys. Lett. 11, 055701 (2014).

    Article  ADS  Google Scholar 

  4. S. Scotto, D. Ciampini, C. Rizzo, and E. Arimondo, Phys. Rev. A 92, 063810 (2015).

    Article  ADS  Google Scholar 

  5. A. D. Sargsyan, A. O. Amiryan, C. Leroy, T. A. Vartanyan, P. A. Petrov, and D. A. Sarkisyan, J. Opt. Technol. 83, 654 (2016).

    Article  Google Scholar 

  6. A. Sargsyan, A. Tonoyan, G. Hakhumyan, and D. Sarkisyan, JETP Lett. 106, 700 (2017).

    Article  ADS  Google Scholar 

  7. A. Tonoyan, A. Sargsyan, E. Klinger, G. Hakhumyan, C. Leroy, M. Auzinsh, A. Papoyan, and D. Sarkisyan, Eur. Phys. Lett. 121, 53001 (2018).

    Article  ADS  Google Scholar 

  8. A. Sargsyan, A. Amiryan, T. A. Vartanyan, and D. Sarkisyan, Opt. Spectrosc. 126, 173 (2019).

    Article  ADS  Google Scholar 

  9. A. Sargsyan, E. Klinger, C. Leroy, T. A. Vartanyan, and D. Sarkisyan, Opt. Spectrosc. 127, 411 (2019).

    Article  ADS  Google Scholar 

  10. A. Sargsyan, A. Amiryan, E. Klinger, and D. Sarkisyan, J. Phys. B: At. Mol. Opt. Phys. B 53, 185002 (2020).

    Article  ADS  Google Scholar 

  11. A. Sargsyan, A. Tonoyan, R. Mirzoyan, D. Sarkisyan, A. M. Wojciechowski, A. Stabrawa, and W. Gawlik, Opt. Lett. 39, 2270 (2014).

    Article  ADS  Google Scholar 

  12. R. S. Mathew, F. Ponciano-Ojeda, J. Keaveney, D. J. Whiting, and I. G. Hughes, Opt. Lett. 43, 4204 (2018).

    Article  ADS  Google Scholar 

  13. A. Sargsyan, A. Tonoyan, A. Papoyan, and D. Sarkisyan, Opt. Lett. 44, 1391 (2019).

    Article  ADS  Google Scholar 

  14. A. Sargsyan, T. A. Vartanyan, and D. Sarkisyan, Opt. Spectrosc. 128, 12 (2020).

    Article  ADS  Google Scholar 

  15. B. A. Olsen, B. Patton, Y. Y. Jau, and W. Happer, Phys. Rev. A 84, 063410 (2011).

    Article  ADS  Google Scholar 

  16. M. A. Zentile, J. Keaveney, L. Weller, D. J. Whiting, C. S. Adams, and I. G. Hughes, Comput. Phys. Commun. 189, 162 (2015).

    Article  ADS  Google Scholar 

  17. M. Ilchen, N. Douguet, T. Mazza, A. J. Rafipoor, C. Callegari, P. Finetti, O. Plekan, K. C. Prince, A. Demidovich, C. Grazioli, L. Avaldi, P. Bolognesi, M. Coreno, M. di Fraia, M. Devetta, et al., Phys. Rev. Lett. 118, 013002 (2017).

    Article  ADS  Google Scholar 

  18. A. Sargsyan, E. Klinger, C. Leroy, T. A. Vartanyan, and D. Sarkisyan, Opt. Spectrosc. 125, 833 (2018).

    Article  ADS  Google Scholar 

  19. C. Umfer, L. Windholz, and M. Musso, Z. Phys. D 25, 23 (1992).

    Article  ADS  Google Scholar 

  20. L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, C. S. Adams, and I. G. Hughes, J. Phys. B 45, 215005 (2012).

    Article  ADS  Google Scholar 

  21. D. J. Whiting, R. S. Mathew, J. Keaveney, C. S. Adams, and I. G. Hughes, J. Mod. Opt. 65, 713 (2018).

    Article  ADS  Google Scholar 

  22. M. A. Zentile, R. Andrews, L. Weller, S. Knappe, C. S. Adams, and I. G. Hughes, J. Phys. B 47, 075005 (2014).

    Article  ADS  Google Scholar 

  23. A. D. Sargsyan, G. T. Hakhumyan, A. H. Amiryan, C. Leroy, H. S. Sarkisyan, and D. H. Sarkisyan, J. Contemp. Phys. (Armen. Acad. Sci.) 50, 317–326 (2015).

    Google Scholar 

  24. P. Tremblay, A. Michaud, M. Levesque, S. Thériault, M. Breton, J. Beaubien, and N. Cyr, Phys. Rev. A 42, 2766 (1990).

    Article  ADS  Google Scholar 

  25. A. Sargsyan, E. Klinger, G. Hakhumyan, A. Tonoyan, A. Papoyan, C. Leroy, and D. Sarkisyan, J. Opt. Soc. Am. B 34, 776 (2017).

    Article  ADS  Google Scholar 

  26. A. Sargsyan, A. Amiryan, Y. Pashayan-Leroy, C. Leroy, A. Papoyan, and D. Sarkisyan, Opt. Lett. 44, 5533 (2019).

    Article  ADS  Google Scholar 

  27. A. Sargsyan, A. Amiryan, C. Leroy, T. A. Vartanyan, and D. Sarkisyan, Opt. Spectrosc. 123, 139 (2017).

    Article  ADS  Google Scholar 

  28. A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, and D. Sarkisyan, Opt. Lett. 37, 1379 (2012).

    Article  ADS  Google Scholar 

  29. A. Sargsyan, G. Hakhumyan, A. Tonoyan, P. A. Petrov, and T. A. Vartanyan, Opt. Spectrosc. 119, 202 (2015).

    Article  ADS  Google Scholar 

  30. D. J. Reed, N. Šibalić, D. J. Whiting, J. M. Kondo, C. S. Adams, and K. J. Weatherill, OSA Continuum 1, 4 (2018).

    Article  Google Scholar 

  31. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, Berlin, Heidelberg, 2004).

    Google Scholar 

  32. A. V. Papoyan, A. Auzinsh, and K. Bergmann, Eur. Phys. J. D 21, 63 (2002).

    Article  ADS  Google Scholar 

  33. E. B. Aleksandrov, G. I. Khvostenko, and M. P. Chaika, Interference of Atomic States (Springer, Berlin, 1993; Nauka, Moscow, 1991).

  34. M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms: Understanding Light-Atom Interactions (Oxford Univ. Press, New York, 2010).

    MATH  Google Scholar 

  35. T. Peyrot, Ch. Beurthe, S. Coumar, M. Roulliay, K. Perronet, P. Bonnay, C. S. Adams, A. Browaeys, and Y. R. P. Sortais, Opt. Lett. 44, 1940 (2019).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A. Papoyan and G. Hakhumyan for useful discussions.

Funding

A. Sargsyan acknowledges the support of the State Committee on Science of the Ministry of Education and Science of the Republic of Armenia (SCS MES RA), project no. 19YR-1C017 for young scientists. T. A. Vartanyan acknowledges the financial support of the State Program of Support of Leading Universities of the Russian Federation (subsidy 08-08). A. Tonoyan the EMPIR Program jointly funded by participating states, along with the Horizon 2020 Program for Innovation and Research of the European Union (EMPIR 17FUN03 USOQS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Vartanyan.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargsyan, A., Tonoyan, A., Vartanyan, T.A. et al. Magnetically Induced Transitions in Spectral Vicinity of the D2 Line of Cs Atoms: Giant Growth of Transition Probabilities and Different Asymptotic Behavior in Increasing Transverse Magnetic Field. Opt. Spectrosc. 128, 1939–1947 (2020). https://doi.org/10.1134/S0030400X20121030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20121030

Keywords:

Navigation