Skip to main content
Log in

The Use of Films of Multilayer Graphene as Coatings of Light-Emitting GaAs Structures

  • OPTICS OF LOW-DIMENSIONAL STRUCTURES, MESOSTRUCTURES, AND METAMATERIALS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A significant (almost two orders of magnitude) increase in the intensity of photo- and electroluminescence of a diode structure with an InGaAs/GaAsSb/GaAs quantum well, GaMnAs layer as a spin injector, and contact coating of a multilayer graphene film has been experimentally detected. The result has been explained by the possible formation of a hybrid system of multilayer graphene and GaAs semiconductor under the influence of He–Ne laser radiation, which leads to a change in the band diagram of the heterostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. N. Yablonsky, S. V. Morozov, D. M. Gaponova, V. Ya. Aleshkin, V. G. Shengurov, B. N. Zvonkov, O. V. Vikhrova, N. V. Baidus’, and Z. F. Krasil’nik, Semiconductors 50, 1435 (2016).

    Article  ADS  Google Scholar 

  2. O. V. Vikhrova, Yu. A. Danilov, B. N. Zvonkov, P. B. Demina, M. V. Dorokhin, I. L. Kalentyeva, and A. V. Kudrin, Phys. Solid State 59, 2216 (2017).

    Article  ADS  Google Scholar 

  3. I. L. Kalentyeva, B. N. Zvonkov, O. V. Vikhrova, Yu. A. Danilov, P. B. Demina, M. V. Dorokhin, and A. V. Zdoroveyshchev, Semiconductors 49, 1430 (2015).

    Article  ADS  Google Scholar 

  4. Y. Ma and L. Zhi, Small Methods 3, 1800199 (2019).

    Article  Google Scholar 

  5. D. H. Shin and S.-H. Choi, Micromachines 9, 350 (2018).

    Article  Google Scholar 

  6. O. V. Vikhrova, Yu. A. Danilov, E. S. Demidov, B. N. Zvonkov, V. I. Kovalev, Z. E. Kun’kova, V. V. Podol’skii, M. V. Sapozhnikov, A. I. Suchkov, and M. P. Temiryazeva, Bull. Russ. Acad. Sci.: Phys. 71, 32 (2007).

    Article  Google Scholar 

  7. B. N. Zvonkov, O. V. Vikhrova, Yu. A. Danilov, Yu. N. Drozdov, A. V. Kudrin, and M. V. Sapozhnikov, Phys. Solid State 52, 2267 (2010).

    Article  ADS  Google Scholar 

  8. A. V. Alaferdov, R. Savu, T. A. Rackauskas, S. Rackauskas, M. A. Canesqui, D. S. de Lara, G. O. Setti, E. Joanni, G. M. de Trindade, U. B. Lima, A. S. de Souza, and S. A. Moshkalev, Nanotecnology 27, 375501 (2016).

    Article  Google Scholar 

  9. A. V. Alaferdov, A. Gholamipour-Shirazi, M. A. Canesqui, Yu. A. Danilov, and S. A. Moshkalev, Carbon 69, 525 (2017).

    Article  Google Scholar 

  10. A. V. Alaferdov, R. Savu, M. A. Canesqui, Y. V. Kopelevich, R. R. da Silva, N. N. Rozhkova, D. A. Pavlov, Yu. V. Usov, G. M. de Trindade, and S. A. Moshkalev, Carbon 129, 826 (2018).

    Article  Google Scholar 

  11. A. C. Ferrari, Solid State Commun. 143, 47 (2007).

    Article  ADS  Google Scholar 

  12. V. A. Ermakov, A. V. Alaferdov, A. R. Vaz, A. V. Baranov, and S. A. Moshkalev, Nanotecnology 24, 155301 (2013).

    Article  ADS  Google Scholar 

  13. A. C. Ferrari and D. M. Basko, Nat. Nanotechnol. 3, 235 (2013).

    Article  ADS  Google Scholar 

  14. S. A. Moshkalev, V. A. Ermakov, A. R. Vaz, A. V. Alaferdov, R. Savu, J. R. Silveira, and A. G. Souza Filho, Microelectron. Eng. 121, 55 (2014).

    Article  Google Scholar 

  15. S. K. Del, R. Bornemann, A. Bablich, H. Schafer-Eberwein, J. Li, T. Kowald, M. Ostling, P. H. Bolivar, and M. C. Lemme, 2D Mater. 2, 011003 (2015).

  16. S. Z. Mortazavi, P. Parvin, and A. Reyhani, Laser Phys. Lett. 9, 547 (2012).

    Article  ADS  Google Scholar 

  17. Y. C. Guan, Y. W. Fang, G. C. Lim, H. Y. Zheng, and M. H. Hong, Sci. Rep. 6, 28913 (2016).

    Article  ADS  Google Scholar 

  18. D. Abramov, S. Arakelian, D. Kochuev, S. Makov, V. Prokoshev, and K. Khorkov, Nanosyst.: Phys., Chem., Math. 7, 220 (2016).

    Google Scholar 

  19. A. V. Eletskii, I. M. Iskandarova, A. A. Knizhnik, and D. N. Krasikov, Phys. Usp. 54, 227 (2011).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We express our deep gratitude to M.A. Kaneski (Center for Semiconductor Components and Nanotechnologies, University of Campinas) for his assistance in obtaining the Raman spectra of the studied structures.

Funding

This work was carried out with the support of the Russian Foundation for Basic Research (grant no. 18-29-19137_mk) and with the partial support of grant no. 19-19-00545 of the Russian Science Foundation (fabrication of structures using pulsed laser deposition).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Danilov.

Ethics declarations

The authors state that they have no conflict of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaferdov, A.V., Vikhrova, O.V., Danilov, Y.A. et al. The Use of Films of Multilayer Graphene as Coatings of Light-Emitting GaAs Structures. Opt. Spectrosc. 128, 387–394 (2020). https://doi.org/10.1134/S0030400X20030030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20030030

Keywords:

Navigation