Skip to main content
Log in

Application of Laser Induced Breakdown in Air in Conjunction with Atomic Absorption Spectroscopy for Detection of Trace Elements in Fennel Seeds

  • Applied Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A robust approach of laser-induced breakdown spectroscopy (LIBS) in ambient air has been employed to investigate concentration of the trace elements in fennel seeds (saunf) via generation of plasma through the second harmonic of solid state Nd: YAG pulsed laser 532 nm. Spectral emissions of saunf plasma were acquired with resolution of 0.06 nm in spectral range of 200–720 nm. The experimental determination showed the existence of elements namely, Ca, Al, K, Fe, S, P, Mg, Mn, Sr, Na, and Zn in the sample. However, no toxic elements such as Pb, Cr etc. were perceived. The relative concentrations of detected elements were measured through the intensity of the strongest peak, intensities of every emission from every specie, and calibration free (CF)-LIBS. To indorse the experimental determinations of LIBS, a comparative study was carried out with the outcomes of atomic absorption spectroscopy (AAS). The results of LIBS and AAS were compared by the statistical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Webb and K. Cain, Biochem. Pharm. 31, 137 (1982).

    Article  Google Scholar 

  2. A. Oluwole, O. Asubiojo, A. Adekile, R. Filby, A. Bragg, and C. Grimm, in Nuclear Analytical Methods in the Life Sciences (Springer, Berlin, Heidelberg, 1990), p. 479.

    Book  Google Scholar 

  3. R. Gowrishankar, M. Kumar, V. Menon, S. M. Divi, M. Saravanan, P. Magudapathy, B. Panigrahi, K. Nair, and K. Venkataramaniah, Biol. Trace Element Res. 133, 357 (2010).

    Article  Google Scholar 

  4. L. J. Radziemski, Spectrochim. Acta, Part B 57, 1109 (2002).

    Article  ADS  Google Scholar 

  5. V. Babushok, F. DeLucia, J. Gottfried, C. Munson, and A. Miziolek, Spectrochim. Acta, Part B 61, 999 (2006).

    Article  ADS  Google Scholar 

  6. J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, Amsterdam, 2007).

    Google Scholar 

  7. L. J. Radziemski and D. A. Cremers, Handbook of Laser Induced Breakdown Spectroscopy (Wiley, West Sussex, 2006).

    Google Scholar 

  8. K. Rehan, I. Rehan, S. Sultana, M. Z. Khan, Z. Farooq, A. Mateen, and M. Humayun, Int. J. Spectrosc. (2017). doi 10.1155/2017/1614654

    Google Scholar 

  9. I. Rehan, K. Rehan, S. Sultana, M. O. ul Haq, M. Z. K. Niazi, and R. Muhammad, Eur. Phys. J.: Appl. Phys. 73, 10701 (2016).

    ADS  Google Scholar 

  10. L. Hong-kun, L. Ming, C. Zhi-jiang, and L. Run-hu, Trans. Nonferr. Met. Soc. China 18, 222 (2008).

    Article  Google Scholar 

  11. A. de Giacomo, M. Dell’Aglio, O. de Pascale, R. Gaudiuso, A. Santagata, and R. Teghil, Spectrochim. Acta, Part B 63, 585 (2008).

    Article  ADS  Google Scholar 

  12. M. A. Gondal, M. M. Nasr, M. M. Ahmed, Z. H. Yamani, and M. Alsalhi, J. Environ. Sci. Health A 46, 42 (2011).

    Article  Google Scholar 

  13. A. Ali, M. Khan, I. Rehan, K. Rehan, and R. Muhammad, J. Spectrosc. (2016). doi 10.1155/2016/1835027

    Google Scholar 

  14. W. Martin, J. Sugar, A. Musgrove, G. Dalton, W. Wiese, J. Fuhr, and D. Kelleher, NIST Database for Atomic Spectroscopy (NIST, Gaithersburg MD, 1995).

    Google Scholar 

  15. V. Juvé, R. Portelli, M. Boueri, M. Baudelet, and J. Yu, Spectrochim. Acta, Part B 63, 1047 (2008).

    Article  ADS  Google Scholar 

  16. Z. Abdel-Salam, J. Al Sharnoubi, and M. Harith, Talanta 115, 422 (2013).

    Article  Google Scholar 

  17. I. Rehan, R. Muhammad, K. Rehan, K. Karim, and S. Sultana, J. Nutr. Food Sci. 7 (2017). doi 10.4172/2155-9600.1000611

  18. K. Rehan, I. Rehan, S. Sultana, M. Zubair Khan, Z. Farooq, A. Mateen, and M. Humayun, J. Spectroscosc. (2017).

    Google Scholar 

  19. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, Appl. Spectrosc. 53, 960 (1999).

    Article  ADS  Google Scholar 

  20. B. Praher, V. Palleschi, R. Viskup, J. Heitz, and J. Pedarnig, Spectrochim. Acta, Part B 65, 671 (2010).

    Article  ADS  Google Scholar 

  21. I. Borgia, L. M. Burgio, M. Corsi, R. Fantoni, V. Palleschi, A. Salvetti, M. C. Squarcialupi, and E. Tognoni, J. Cult. Heritage 1, S281 (2000).

    Article  Google Scholar 

  22. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge Univ. Press, Cambridge, 2005), Vol. 2.

  23. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).

    Google Scholar 

  24. L. J. Radziemski, T. R. Loree, D. A. Cremers, and N. M. Hoffman, Anal. Chem. 55, 1246 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Rehan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehan, I., Sultana, S., Rehan, K. et al. Application of Laser Induced Breakdown in Air in Conjunction with Atomic Absorption Spectroscopy for Detection of Trace Elements in Fennel Seeds. Opt. Spectrosc. 125, 130–136 (2018). https://doi.org/10.1134/S0030400X18070238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18070238

Navigation