Skip to main content

Advertisement

Log in

Laser-induced breakdown spectroscopy of environmental and synthetic samples using non-intensified CCD: optimization of the excitation wavelength

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Laser-induced breakdown spectroscopy (LIBS) is a technique increasingly used to perform fast semi-quantitative multi-elemental analyses of various materials without any complex sample preparation, being also suitable for in situ analyses. Few studies have been performed to understand the influence of laser wavelength on LIBS analytical performance on environmental samples. The main goal of this study was to perform a comparative elemental analysis of a number of soils, citrus leaves, and synthetic solid matrices using two different wavelengths, i.e., 532 and 1064 nm of Nd:YAG lasers, and a spectrometer coupled to a non-intensified charge-coupled device camera as the detection system. The emission lines with higher upper energy level, i.e., C I—193.03 (7.685 eV) and Si I—212.41 nm (6.616 eV), were more intense when using the 532 nm than the 1064 nm laser light, whereas the opposite occurred for elements with lower upper energy level, i.e., Ti I—336.12 nm (3.716 eV) and Fe I—368.75 nm (4.220 eV). The observed increase in LIBS signal between the two wavelengths is about 30–50%. The relationship between the line emission intensities and the used excitation wavelengths were associated to the upper level energy of the element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Awasthi, P. Kumar, G.K. Rai, A.K. Rai, Opt. Las. Eng. 79, 29–38 (2016)

    Article  Google Scholar 

  2. A.N. Kadachi, M.A. Al-Eshaikh, Spectrosc. Lett. 48, 403–410 (2015)

    Article  ADS  Google Scholar 

  3. S. Siano, J. Agresti, Stud. Conserv. 60, sup1, S106–S119 (2015)

    Google Scholar 

  4. E.C. Ferreira, D.M.B.P. Milori, E.J. Ferreira, L.M. dos Santos, L. Martin-Neto, A.R. de Araújo Nogueira, Talanta 85, 435–440 (2012)

    Article  Google Scholar 

  5. G. Nicolodelli et al., Appl. Optics 53, 2170–2176 (2014)

    Article  ADS  Google Scholar 

  6. A. Segnini. et al, Am. J. Anal. Chem 5, 722–729 (2014)

    Article  Google Scholar 

  7. E.C. Ferreira, E.J. Ferreira, P.R. Villas-Boas, G.S. Senesi, C.M. Carvalho, R.A. Romano, L. Martin-Neto, D.M.B.P. Milori, Spectrochim. Acta Part B 99, 76–81 (2014)

    Article  ADS  Google Scholar 

  8. G.S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. de Giacomo, C. Zaccone, O. DePascale, T.M. Miano, M. Capitelli, Environ. Res. 109, 413–420 (2009)

    Article  Google Scholar 

  9. S. Pandhija, N.K. Rai, A.K. Pathak, A.K. Rai, A.K. Choudhary, Spectrosc. Lett. 47, 579–589 (2014)

    Article  ADS  Google Scholar 

  10. M. Pouzar, T. Cernohorsk, M. Prusova, P. Prokopcakova, A. Krejcova, J. Anal. At. Spectrom. 24, 953–957 (2009)

    Article  Google Scholar 

  11. M. Hanif, M. Salik, M.A. Baig Opt. Laser Eng. 49, 1456–1461 (2011).

    Article  Google Scholar 

  12. D.J. Santos, L.C. Nunes, G.G.A. Carvalho, M.S. Gomes, P.F. Souza, F.O. Leme, L.G.C. Santos, F.J. Krug, Spectrochim. Acta Part B 71–72, 3–13 (2012)

    Article  Google Scholar 

  13. C. Barnett, E. Cahoon, J.R. Almirall, Spectrochim. Acta Part B 63, 1016–1023 (2008)

    Article  ADS  Google Scholar 

  14. E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, Spectrochim. Acta Part B 57, 1115–1130 (2002)

    Article  ADS  Google Scholar 

  15. V. Zorba, X. Mao, R.E. Russo, Appl. Phys. Lett. 95, 041110 (2009)

    Article  ADS  Google Scholar 

  16. P.K. Diwakar, S.S. Harilal, J.R. Freeman, A. Hassanein, Spectrochim. Acta Part B 87, 65–73 (2013)

    Article  ADS  Google Scholar 

  17. J.K. Antony, N.J. Vasa, V.L.N.S. Raja, A.S. Laxmiprasad, Appl. Phys. A 112, 215–219 (2013)

    Article  ADS  Google Scholar 

  18. C.W. Ng; W.F. Ho, N.H. Cheung, Appl. Spectrosc. 51, 976–983 (1997).

    Article  ADS  Google Scholar 

  19. Z. Da-Cheng, M. Xin-Wen, W. Wei-Qiang, Z. Peng-Ju, Z. Xiao-Long, L. Bin, L. Hui-Ping, Chin. Phys. Lett. 27, 063202 (2010)

    Article  ADS  Google Scholar 

  20. R.E. Russo, X. Mao, H. Liu, J. Gonzalez, S.S. Mao, Talanta 57, 425–451 (2002)

    Article  Google Scholar 

  21. R. Ahmed, M.A. Baig, Opt. Laser Technol. 65, 113–118 (2015)

    Article  ADS  Google Scholar 

  22. G.S. Senesi, I. Carrara, G. Nicolodelli, D.M.B.P. Milori, O. De Pascale, Microchem. J. 124, 296–305 (2016)

    Article  Google Scholar 

  23. G. Nicolodelli, G.S. Senesi, R.A. Romano, I.L.O. Perazzoli, D.M.B.P. Milori, Spectrochim. Acta. Part B, 111, 23–29 (2015).

    Article  ADS  Google Scholar 

  24. L. Fornarini, V. Spizzichino, F. Colao, R. Fantoni, V. Lazi, Anal. Bioanal. Chem. 385, 272–280 (2006)

    Article  Google Scholar 

  25. W. Sdorra, J. Brust, K. Niemax, Mikrochim. Acta. 108, 1–10 (1992).

    Article  Google Scholar 

  26. L.M. Berman, P. Wolf, J. Appl. Spectrosc. 52, 438–443 (1998)

    Article  ADS  Google Scholar 

  27. N. Elsherbiny, O.A. Nassef, Sci. Justice 55, 254–263 (2015)

    Article  Google Scholar 

  28. Y. Suzaki, A. Tachibana, Appl. Optics, 14, 2809–2810 (1975)

    Article  ADS  Google Scholar 

  29. B.S. Marangoni, K.S.G. Silva, G. Nicolodelli, G.S. Senesi, J.S. Cabral, P.R. Villas-Boas, C.S. Silva, P.C. Teixeira, A.R.A. Nogueira, V.M. Benites, D.M.B.P. Milori, Anal. Methods 8, 78–82 (2016)

    Article  Google Scholar 

  30. G. Nicolodelli, G.S. Senesi, I.L.O. Perazzoli, B.S. Marangoni, V.M. Benites, D.M.B.P. Milori, Sci. Total Environ. 565, 1116–1123 (2016)

    Article  Google Scholar 

  31. M. Moll, M. Schlanges, Th. Bornath, V.P. Krainov New J. Phys. 14, 065010 (2012).

    Article  ADS  Google Scholar 

  32. V.N. Raia, S.N. Thakurb, Physics of plasma in laser-induced breakdown spectroscopy, in Laser-Induced Breakdown Spectroscopy, ed. by J.P. Singh, S.N. Thakur (Elsevier press, Amsterdam, 2007)

  33. R.E. Russo, X.L. Mao, J.H. Yoo, J.J. Gonzalez, in Laser Ablation, in Laser-Induced Breakdown Spectroscopy, ed. by J.P. Singh, S.N. Thakur (Elsevier press, Amsterdam, 2007)

  34. D. Kleppner, in Interaction Laser-Plasma. Laser-Plasma Interaction, ed. by R. Bailan, J.C. Adam (North-Holland Publishing Company, Amsterdam, 1980)

Download references

Acknowledgements

The authors thank FAPESP (Process: 2012/24349-0 and 2013/07276-1), CNPq, and EMBRAPA for their financial support to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. B. P. Milori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicolodelli, G., Senesi, G.S., Romano, R.A. et al. Laser-induced breakdown spectroscopy of environmental and synthetic samples using non-intensified CCD: optimization of the excitation wavelength. Appl. Phys. B 123, 127 (2017). https://doi.org/10.1007/s00340-017-6699-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6699-6

Keywords

Navigation