Skip to main content
Log in

Calculation of Chemical Shifts of X-Ray-Emission Spectra of Niobium in Niobium(V) Oxides Relative to Metal

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Chemical shifts of the Kα1 and Kβ1 lines of X-ray-emission spectra of niobium in oxides (Nb2O5)n, n = 1–4, relative to metal Nb have been calculated. Stoichiometric clusters (Nb2O5)n the electronic structure of which was calculated using accurate relativistic pseudopotentials and two-component version of the density functional theory are considered as prototypes for modeling different crystal forms of niobium(V) oxide. The chemical shifts were calculated using the method based on using the property of approximate proportionality of valence spinors in the core region of the heavy atom [11]. Corrections to values of chemical shifts have been determined with allowance for deviations from the abovementioned proportionality. Rapid convergence of results with respect to the size of the niobium oxide cluster has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Joseph, Am. Mineral. 40, 805 (1955).

    Google Scholar 

  2. I. Nakai, J. Akimoto, M. Imafuku, et al., Phys. Chem. Miner. 15, 113 (1987).

    Article  ADS  Google Scholar 

  3. O. I. Sumbaev, Sov. Phys. Usp. 21, 141 (1978).

    Article  ADS  Google Scholar 

  4. Y. V. Lomachuk and A. V. Titov, Phys. Rev. A 88, 062511 (2013).

    Article  ADS  Google Scholar 

  5. A. V. Titov, Y. V. Lomachuk, and L. V. Skripnikov, Phys. Rev. A 90, 052522 (2014).

    Article  ADS  Google Scholar 

  6. Y. V. Lomachuk, D. A. Maltsev, Y. A. Demidov, et al., Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.) 20, 170 (2017).

    Google Scholar 

  7. B. M. Gatehouse and A. D. Wadsley, Acta Crystallogr. 17, 1545 (1964).

    Article  Google Scholar 

  8. H. Zhai, J. Döbler, J. Sauer, and L. Wang, J. Am. Chem. Soc. 129, 13270 (2007).

    Article  Google Scholar 

  9. S. E. Waller, D. W. Rothgeb, and C. C. Jarrold, J. Chem. Phys. 135, 104317 (2011).

    Article  ADS  Google Scholar 

  10. C. van Wüllen, Z. Phys. Chem. 224, 413 (2010).

    Article  Google Scholar 

  11. A. V. Titov and N. S. Mosyagin, Int. J. Quantum Chem. 71, 359 (1999).

    Article  Google Scholar 

  12. N. S. Mosyagin, A. V. Zaitsevskii, and A. V. Titov, Rev. At. Mol. Phys. 1, 63 (2010).

    Google Scholar 

  13. N. S. Mosyagin, A. V. Zaitsevskii, L. V. Skripnikov, and A. V. Titov, Int. J. Quantum Chem. 116, 301 (2016).

    Article  Google Scholar 

  14. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).

    Article  ADS  Google Scholar 

  15. A. Schäfer, C. Huber, and R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994).

    Article  ADS  Google Scholar 

  16. A. V. Titov, N. S. Mosyagin, A. N. Petrov, et al., Prog. Theor. Chem. Phys. 15, 253 (2006).

    Article  Google Scholar 

  17. A. V. Titov, N. S. Mosyagin, A. N. Petrov, and T. A. Isaev, Int. J. Quantum Chem. 104, 223 (2005).

    Article  ADS  Google Scholar 

  18. L. V. Skripnikov and A. V. Titov, Phys. Rev. A 91, 042504 (2015).

    Article  ADS  Google Scholar 

  19. L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, et al., Phys. Rev. A 92, 012521 (2015).

    Article  ADS  Google Scholar 

  20. L. V. Skripnikov, A. D. Kudashov, A. N. Petrov, and A. V. Titov, Phys. Rev. A 90, 064501 (2014).

    Article  ADS  Google Scholar 

  21. J. Lee, J. Chen, L. V. Skripnikov, et al., Phys. Rev. A 87, 022516 (2013).

    Article  ADS  Google Scholar 

  22. L. V. Skripnikov, J. Chem. Phys. 145, 214301 (2016).

    Article  ADS  Google Scholar 

  23. V. F. Bratsev, G. B. Deineka, and I. I. Tupitsyn, Izv. Akad. Nauk SSSR, Fiz. 41 (12), 173 (1977).

    Google Scholar 

  24. I. Maier, Selected Chapters of Quantum Chemistry: Proofs of Theorems and Formulas (BINOM, Labor. Znanii, Moscow, 2006), p. 197 [in Russian].

    Google Scholar 

  25. N. S. Mosyagin and A. V. Titov, Generalized Relativistic Effective Core Potentials. http://www.qchem.pnpi.spb.ru/recp.

  26. WebElements Periodic Table of the Elements. www.webelements.com/niobium/crystal_structure. html.

  27. E. Sanville, S. D. Kenny, R. Smith, and G. Henkelman, J. Comput. Chem. 28, 899 (2007).

    Article  Google Scholar 

  28. W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.V. Lomachuk, Yu.A. Demidov, L.V. Skripnikov, A.V. Zaitsevskii, S.G. Semenov, N.S. Mosyagin, A.V. Titov, 2018, published in Optika i Spektroskopiya, 2018, Vol. 124, No. 4, pp. 455–460.

Conference on Precision Atomic Molecular Spectroscopy, November 13–14, 2017, Petersburg Nuclear Physics Institute, National Research Centre Kurchatov Institute, Gatchina, Russia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lomachuk, Y.V., Demidov, Y.A., Skripnikov, L.V. et al. Calculation of Chemical Shifts of X-Ray-Emission Spectra of Niobium in Niobium(V) Oxides Relative to Metal. Opt. Spectrosc. 124, 472–477 (2018). https://doi.org/10.1134/S0030400X18040100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18040100

Navigation