Skip to main content
Log in

Fluorescence and picosecond induced absorption from the lowest singlet excited states of quercetin in solutions and polymer films

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The spectroscopic and photophysical properties of the biologically important plant antioxidant quercetin in organic solvents, polymer films of polyvinyl alcohol, and a buffer solution at pH 7.0 are studied by stationary luminescence and femtosecond laser spectroscopy at room temperature and 77 K. The large magnitude of the dipole moment of the quercetin molecule in the excited Franck–Condon state μ FC e = 52.8 C m indicates the dipolar nature of quercetin in this excited state. The transient induced absorption spectra S 1S n in all solvents are characterized by a short-wave band at λ maxabs = 460 nm with exponential decay times in the range of 10.0–20.0 ps. In the entire spectral range at times of >100 ps, no residual induced absorption was observed that could be attributed to the triplet–triplet transitions Т 1Т k in quercetin. In polar solvents, two-band fluorescence was also recorded at room temperature, which is due to the luminescence of the initial enol form of quercetin (~415 nm) and its keto form with a transferred proton (550 nm). The short-wave band is absent in nonpolar 2-methyltetrahydrofuran (2-MTHF). The spectra of fluorescence and fluorescence excitation exhibit a low dependence on the wavelength of excitation and detection, which may be related to the solvation and conformational changes in the quercetin molecule. Decreasing the temperature of a glassy-like freezing quercetin solution in ethanol and 2-MTHF to 77 K leads to a strong increase in the intensity (by a factor of ~100) of both bands. The energy circuits for the proton transfer process are proposed depending on the polarity of the medium. The main channel for the exchange of electronic excitation energy in the quercetin molecule at room temperature is the internal conversion S 1S 0, induced by the state with a proton transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rothwell, A. J. Day, and M. R. A. Morgan, J. Agric. Food Chem. 53, 4355 (2005).

    Article  Google Scholar 

  2. H. Schilcher, B. Patz, and K. Ch. Schimmel, Ärctezeitschr. Naturheilverfahren 31, 819 (1990).

    Google Scholar 

  3. A. Gaberšcik, M. Voncina, T. Trošt, M. Germ, and L. O. Björn, J. Photochem. Photobiol. B 66, 36 (2002).

    Google Scholar 

  4. St. Rusnyak and A. Szent-Györgyi, Nature 13, 798 (1936).

    Google Scholar 

  5. P. G. Pietta, J. Nat. Prod. 63, 1035 (2000).

    Article  Google Scholar 

  6. S. Nagai, K. Ohara, and K. Mukai, J. Phys. Chem. B 109, 4234 (2005).

    Article  Google Scholar 

  7. H. A. Milane, G. Ubeaud, T. F. Vandamme, and L. Jung, Biorg. Med. Chem. 12, 3627 (2004).

    Article  Google Scholar 

  8. S. V. Jovanovic, S. Steenken, Y. Hara, and M. G. Simie, J. Chem. Soc., Perkin Trans., No. 2, 2497 (1996).

    Article  Google Scholar 

  9. V. A. Kostyuk and A. I. Potapovich, Bioradicals and Bioantioxidants (Belorus. Gos. Univ., Minsk, 2004) [in Russian].

    Google Scholar 

  10. S. L. Bondarev and V. N. Knyukshto, J. Lumin. 142, 136 (2013).

    Article  Google Scholar 

  11. E. V. Bondaryuk and V. V. Senchuk, Vestn. Belorus. Univ., Ser. 2, No. 2, 27 (2006).

    Google Scholar 

  12. J. A. Mezzetti, S. Protti, C. Lapouge, and J.-P. Cornard, Phys. Chem. Chem. Phys. 13, 6858 (2011).

    Article  Google Scholar 

  13. E. Falkovskaia, P. K. Sengupta, and M. Kasha, Chem. Phys. Lett. 297, 109 (1998).

    Article  ADS  Google Scholar 

  14. P.-T. Chou, Y.-C. Chen, W.-C. Yu, and Y.-M. Cheng, Chem. Phys. Lett. 340, 89 (2001).

    Article  ADS  Google Scholar 

  15. J. C. Valle, J. Chem. Phys. 124, 104506 (2006).

    Article  ADS  Google Scholar 

  16. S. Höfener, P. C. Kooijman, and J. Groen, Phys. Chem. Chem. Phys. 15, 12572 (2013).

    Article  Google Scholar 

  17. D. McMorrow and M. Kasha, J. Phys. Chem. 88, 2235 (1984).

    Article  Google Scholar 

  18. P. Chou, D. McMorrow, T. J. Aartsma, and M. Kasha, J. Phys. Chem. 88, 4596 (1984).

    Article  Google Scholar 

  19. A. Sytnik and M. Kasha, Proc. Natl. Acad. Sci. USA 91, 8627 (1994).

    Article  ADS  Google Scholar 

  20. M. L. Martinez, L. S. Shannong, and P. T. Chou, J. Am. Chem. Soc. 113, 5881 (1991).

    Article  Google Scholar 

  21. S. L. Bondarev, V. N. Knyukshto, S. A. Tikhomirov, and O. V. Buganov, Zh. Prikl. Spektrosk. 6, 837 (2015).

    Google Scholar 

  22. E. A. Borisevich, V. N. Knyukshto, A. N. Kozyrev, and K. N. Solov’ev, Opt. Spectrosc. 74, 129 (1993).

    ADS  Google Scholar 

  23. J. N. Demas and G. A. Crosby, J. Chem. Phys. 75, 991 (1971).

    Article  Google Scholar 

  24. N. A. Borisevich, O. V. Buganov, S. A. Tikhomirov, G. B. Tolstorozhev, and G. L. Shkred, Quantum Electron. 29, 780 (1999).

    Article  ADS  Google Scholar 

  25. E. MacRae, J. Phys. Chem. 61, 562 (1957).

    Article  Google Scholar 

  26. N. G. Bakhshiev, M. I. Knyazhanskii, V. I. Minkin, O. A. Osipov, and G. V. Saidov, Usp. Khim. 38, 1643 (1969).

    Article  Google Scholar 

  27. S. Domagala, P. Munshi, M. Ahmed, B. Guillot, and C. Jelsch, Acta. Crystallogr. B 67, 63 (2011).

    Article  Google Scholar 

  28. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry (Wiley, Weinheim, 2003; Khimiya, Leningrad, 1973), rus. p.151.

    Google Scholar 

  29. R. H. M. van de Leur, Polymer 35, 2691 (1994).

    Article  Google Scholar 

  30. P. Matteini, A. Gott, and G. Agati, Monatsh. Chem. 141, 793 (2010).

    Article  Google Scholar 

  31. J. P. Cornard, A. C. Boudet, and C. Merlin, J. Mol. Struct. 508, 37 (1999).

    Article  ADS  Google Scholar 

  32. M. Kasha, in Physical and Chemical Mechanisms in Molecular Radiation Biology, Ed. by W. A. Glass and M. N. Varma (Plenum, New York, London, 1991), p.231.

  33. S. J. Formosinho and L. G. Arnaut, J. Photochem. Photobiol. A 75, 21 (1993).

    Article  Google Scholar 

  34. B. Dick and N. P. Ernsting, J. Phys. Chem. 91, 4261 (1987).

    Article  Google Scholar 

  35. M. E. Rozenberg, Vinyl Acetate Polymers (Khimiya, Leningrad, 1983) [in Russian].

    Google Scholar 

  36. Y. Norikane, H. Itoh, and A. Arai, J. Photochem. Photobiol. A 161, 163 (2004).

    Article  Google Scholar 

  37. V. Avila and C. M. Previtali, J. Chem. Soc., Perkin Trans. II 2, 2281 (1995).

    Article  Google Scholar 

  38. R. Simkovitch and D. Huppert, J. Phys. Chem. B 119, 10244 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Bondarev.

Additional information

Original Russian Text © S.L. Bondarev, S.A. Tikhomirov, O.V. Buganov, V.N. Knyukshto, T.F. Raichenok, 2017, published in Optika i Spektroskopiya, 2017, Vol. 122, No. 3, pp. 464–474.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondarev, S.L., Tikhomirov, S.A., Buganov, O.V. et al. Fluorescence and picosecond induced absorption from the lowest singlet excited states of quercetin in solutions and polymer films. Opt. Spectrosc. 122, 452–461 (2017). https://doi.org/10.1134/S0030400X17030031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X17030031

Navigation