Skip to main content
Log in

Calculation of the optical spectra of the copper(I) complex with triphenylphosphine, iodine, and 3-pyridine-2-yl-5-phenyl-1H-1,2,4-triazole by the DFT method

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The IR and UV spectra of the [CuIL(PPh3)] complex (PPh3 = triphenylphosphine, L = 3-pyridine- 2-yl-5-phenyl-1Н-1,2,4-triazole) have been analyzed in detail within the density functional theory (DFT) and its time-dependent version TD DFT. The standard functional B3LYP and sets of basis orbitals 6-311G(d,p) and Lanl2DZ are used for the atoms of the elements of periods I and II and for the iodine atom, respectively. The calculated IR spectra of the complex and free ligands coincide with the observed IR bands, due to which one can completely interpret all normal modes and confirm X-ray diffraction (XRD) data. Particular attention is paid to the structure of excited triplet (Т 1) state in order to explain the role of copper and iodine ions in the formation of photo- and electroluminescence spectra. It is shown that the equilibrium Т 1 state undergoes structural relaxation after the vertical excitation and significantly changes its electronic nature and the charge transfer structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Hofbeck, U. Monkowius, and H. Yersin, J. Am. Chem. Soc. 137, 399 (2015).

    Article  Google Scholar 

  2. R. Czerwieniec and H. Yersin, Inorg. Chem. 54, 4322 (2015).

    Article  Google Scholar 

  3. R. Czerwieniec, K. Kowalski, and H. Yersin, Dalton Trans. 42, 9826 (2013).

    Article  Google Scholar 

  4. M. J. Leitl, D. M. Zink, A. Schinabeck, T. Baumann, D. Volz, and H. Yersin, Top. Curr. Chem. 374, 25 (2016).

    Article  Google Scholar 

  5. M. A. Baldo, M. E. Thompson, and S. R. Forrest, Pure Appl. Chem. 71, 2095 (1999).

    Article  Google Scholar 

  6. V. Cherpak, P. Stakhira, B. Minaev, G. Baryshnikov, E. Stromylo, I. Helzhynskyy, M. Chapran, D. Volyniuk, D. Tomkuté-Lukšiené, T. Malinauskas, V. Getautis, A. Tomkeviciene, J. Simokaitiene, and J. V. Grazulevicius, J. Phys. Chem. C 118, 11271 (2014).

    Article  Google Scholar 

  7. B. Minaev, G. Baryshnikov, and H. Agren, Phys. Chem. Chem. Phys. 16, 1719 (2014).

    Article  Google Scholar 

  8. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, Nature 492 (7428), 234 (2012).

    Article  ADS  Google Scholar 

  9. Y.-G. Ma, W.-H. Chan, X.-M. Zhou, and C.-M. Che, New J. Chem. 23, 263 (1999).

    Article  Google Scholar 

  10. F. Dumur, Org. Electron. 21, 27 (2015).

    Article  Google Scholar 

  11. J. Föller, M. Kleinschmidt, and C. M. Marian, Inorg. Chem. 55, 7508 (2016).

    Article  Google Scholar 

  12. M. J. Leitl, V. A. Krylova, P. I. Djurovich, and M. E. Thompson, J. Am. Chem. Soc. 136, 16032 (2014).

    Article  Google Scholar 

  13. K. A. Vinogradova, V. F. Plyusnin, A. S. Kupryakov, et al., Dalton Trans. 43, 2953 (2014).

    Article  Google Scholar 

  14. R. R. Valiev, B. F. Minaev, and R. M. Gadirov, Russ. Phys. J. 58, 1205 (2016).

    Article  Google Scholar 

  15. A. N. Gusev, E. A. Slyusareva, B. F. Minaev, G. V. Baryshnikov, V. A. Minaeva, A. T. Baryshnikova, M. A. Kiskin, and I. L. Eremenko, Russ. J. Inorg. Chem. 117 (4) (2017, in press).

    Google Scholar 

  16. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  17. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  18. W. R. Wadt and P. J. Hay, J. Chem. Phys. 82, 284 (1985).

    Article  ADS  Google Scholar 

  19. A. J. H. Wachters, J. Chem. Phys. 52, 1033 (1970).

    Article  ADS  Google Scholar 

  20. P. J. Hay, J. Chem. Phys. 66, 4377 (1977).

    Article  ADS  Google Scholar 

  21. K. Raghavachari and G. W. Trucks, J. Chem. Phys. 91, 1062 (1989).

    Article  ADS  Google Scholar 

  22. T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. R. Schleyer, J. Comput. Chem. 4, 294 (1983).

    Article  Google Scholar 

  23. M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys. 80, 3265 (1984).

    Article  ADS  Google Scholar 

  24. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09, Rev. D.01 (Gaussian Inc., Wallingford, CT, 2009).

    Google Scholar 

  25. S. I. Gorelsky, SWizard Program (Univ. of Ottawa, Ottawa, Canada, 2013). http://www.sg-chem.net/.

    Google Scholar 

  26. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).

    Article  ADS  Google Scholar 

  27. R. Hoffmann, Acc. Chem. Res. 4, 1 (1971).

    Article  Google Scholar 

  28. S. Daniel, D. Guillaumont, C. Ribbing, and B. Minaev, J. Phys. Chem. A 103, 5766 (1999).

    Article  Google Scholar 

  29. B. Minaev, O. Loboda, O. Vahtras, K. Ruud, and H. Ågren, Theor. Chem. Acc. 111, 168 (2004).

    Article  Google Scholar 

  30. O. Loboda, B. Minaev, O. Vahtras, K. Ruud, and H. Ågren, J. Chem. Phys. 119, 3120 (2003).

    Article  ADS  Google Scholar 

  31. B. F. Minaev, D. Jonsson, P. Norman, and H. Ågren, Chem. Phys. 194, 19 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Minaeva.

Additional information

Original Russian Text © V.A. Minaeva, B.F. Minaev, G.V. Baryshnikov, 2017, published in Optika i Spektroskopiya, 2017, Vol. 122, No. 2, pp. 193–202.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minaeva, V.A., Minaev, B.F. & Baryshnikov, G.V. Calculation of the optical spectra of the copper(I) complex with triphenylphosphine, iodine, and 3-pyridine-2-yl-5-phenyl-1H-1,2,4-triazole by the DFT method. Opt. Spectrosc. 122, 175–183 (2017). https://doi.org/10.1134/S0030400X17020187

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X17020187

Navigation