Skip to main content
Log in

Temperature measurements using a projection to latent structures of fluorescence spectra of potassium–aluminum borate glasses with copper-containing molecular clusters

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Luminescence spectra of a potassium–aluminum borate glass with copper-containing molecular clusters are presented in the temperature range of 295–624 K. Two methods of temperature measurement are compared with the aim of evaluating the possibility of their further application in optical temperature sensors: specifically, the classical method of measuring a temperature based on the spectral position of the fluorescence band peak and the measurement method based on projection to latent structures of fluorescence spectra in the visible range. It is shown that, concerning the accuracy of measuring a temperature, the fourdimensional space of latent structures is preferred for the case under consideration; it allows one to determine (using a training set of fluorescence spectra) a temperature with the relative error of no more than 1.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Boutinaud, D. Garcia, C. Parent, M. Faucher, and G. le Flem, J. Phys. Chem. Solids 56, 1147 (1995).

    Article  ADS  Google Scholar 

  2. J. Špirková, P. Nebolová, I. Jirka, et al., Fiber Integr. Opt. 21, 63 (2002).

    Article  ADS  Google Scholar 

  3. J. D. Barrie, B. Dunn, G. Hollingsworth, and J. I. Zink, J. Phys. Chem. 1, 3958 (1989).

    Article  Google Scholar 

  4. A. le Nestour, M. Gaudon, G. Villeneuve, R. Andriessen, and A. Demourgues, Inorg. Chem. 46, 2645 (2007).

    Article  Google Scholar 

  5. C. Vázquez-Vázquez, M. Bañobre-López, A. Mitra, M. A. López-Quintela, and J. Rivas, Langmuir 25, 8208 (2009).

    Article  Google Scholar 

  6. A. N. Pestryakov, V. P. Petranovskii, A. Kryazhov, O. Ozhereliev, N. Pfander, and A. Knop-Gericke, Chem. Phys. Lett. 385, 173 (2004).

    Article  ADS  Google Scholar 

  7. K. Fukumi, A. Chayahara, K. Ohora, and N. Kitamura, Nucl. Instrum. Methods Phys. Res. 149, 77 (1999).

    Article  ADS  Google Scholar 

  8. H. D. Hardt and A. Pierre, Z. Anorg. Allg. Chem. 402, 107 (1973).

    Article  Google Scholar 

  9. E. Borsella, A. dal Vecchio, M. A. Garcia, et al., J. Appl. Phys. 91, 90 (2002).

    Article  ADS  Google Scholar 

  10. I. O. Koshevoy, C.-L. Lin, A. J. Karttunen, et al., Chem. Commun. 47, 5533 (2011).

    Article  Google Scholar 

  11. D. Sun, L. Zhang, H. Lu, and S. Feng, Dalton Trans. 42, 3528 (2013).

    Article  Google Scholar 

  12. P. C. Ford, E. Cariati, and J. Bourassa, Chem. Rev. 99, 3625 (1999).

    Article  Google Scholar 

  13. A. N. Babkina, P. S. Shirshnev, N. V. Nikonorov, A. I. Sidorov, and E. V. Kolobkova, Proc. SPIE–Int. Soc. Opt. Eng. 9506, 95060B1 (2015).

    Google Scholar 

  14. A. N. Babkina, N. V. Nikonorov, A. I. Sidorov, P. S. Shirshnev, and T. A. Shakhverdov, Opt. Spectrosc. 116, 84 (2014).

    Article  Google Scholar 

  15. A. Kumar Soni, Rai V. Kumar, and S. Kumar, Sens. Actuators B 229, 476 (2016).

    Article  Google Scholar 

  16. R. Wang, X. Zhang, F. Liu, Y. Chen, and L. Liu, Opt. Mater. 43, 18 (2015).

    Article  ADS  Google Scholar 

  17. S. Zhou, X. Li, X. Wei, C. Duan, and Y. Min, Sens. Actuators B 231, 641 (2016).

    Article  Google Scholar 

  18. Ol. A. Savchuk, J. J. Carvajal, M. C. Pujol, J. Massons, P. Haro-González, O. Martinez, J. Jiménez, M. Aguiló, and F. Díaz, J. Lumin. 169, 711 (2016).

    Article  Google Scholar 

  19. Q. Zhang, G. Chen, G. Dong, et al., Chem. Phys. Lett. 482, 228 (2009).

    Article  ADS  Google Scholar 

  20. V. A. Aseev, Yu. A. Varaksa, E. V. Kolobkova, G. V. Sinitsyn, M. A. Khodasevich, and A. S. Yasyukevich, Nauch.-Tekh. Vestn. Inform. Tekhnol., Mekh. Opt. 15, 457 (2015).

    Article  Google Scholar 

  21. V. K. Rai and S. B. Rai, Appl. Phys. B 87, 323 (2007).

    Article  ADS  Google Scholar 

  22. H. Abdi, Wiley Interdiscip. Rev.: Comput. Stat. 2, 97 (2010).

    Article  Google Scholar 

  23. S. N. Deming, Y. Michotte, D. L. Massart, L. Kaufman, and B. G. M. Vandeginste, Chemometrics: A Textbook (Elsevier, New York, 1988).

    MATH  Google Scholar 

  24. S. M. Azcarate, L. D. Martinez, M. Savio, J. M. Camina, and R. A. Gil, Food Control 57, 268 (2015).

    Article  Google Scholar 

  25. A. Gredilla, S. Fdez-Ortiz de Vallejuelo, N. Elejoste, A. de Diego, and J. M. Madariaga, Trends Anal. Chem. 76, 30 (2016).

    Article  Google Scholar 

  26. V. A. Aseev, Yu. A. Varaksa, E. V. Kolobkova, G. V. Sinitsyn, and M. A. Khodasevich, Opt. Spectrosc. 118, 727 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Babkina.

Additional information

Original Russian Text © A.N. Babkina, M.A. Khodasevich, P.S. Shirshnev, 2017, published in Optika i Spektroskopiya, 2017, Vol. 122, No. 2, pp. 236–240.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babkina, A.N., Khodasevich, M.A. & Shirshnev, P.S. Temperature measurements using a projection to latent structures of fluorescence spectra of potassium–aluminum borate glasses with copper-containing molecular clusters. Opt. Spectrosc. 122, 214–218 (2017). https://doi.org/10.1134/S0030400X17020059

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X17020059

Navigation