Skip to main content
Log in

Synthesis, spectroscopic investigations, and computational study of 4-((9,10-dioxo-9,10-dihydroanthracen-1-yl)oxy)-3-methoxybenzaldehyde

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

4-((9,10-dioxo-9,10-dihydroanthracen-1-yl)oxy)-3-methoxybenzaldehyde has been synthesized in an attempt to obtain a new photochromic compound. The optimized molecular structure, mole fractions of title compound in trans and ana forms have been investigated. UV-visible spectra of the compound were also recorded. Upon irradiation with 300 nm light, the camel solid turned orange, in which a visible absorption band was observed at 475 nm. The electronic properties, such as HOMO, LUMO and band gap energies were obtained by the time-dependent DFT (TD-DFT) approach. The predicted nonlinear optical properties of the title compound are much greater than those of urea. Transition structures were calculated by QST3 and IRC methods which yielded the potential energy surface and activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ryo, Y. Ishibashi, M. Murakami, H. Miyasaka, S. Kobatake, and M. Irie, J. Phys. Org. Chem. 20, 953 (2007).

    Article  Google Scholar 

  2. S. A. Ahmed, J. Phys. Org. Chem. 19, 402 (2006).

    Article  Google Scholar 

  3. S. Y. Ju, D. I. Kwon, S. J. Minb, K. D. Ahn, K. H. Park, and J. M. Kim, J. Photochem. Photobiol. A: Chem. 160, 151 (2003).

    Article  Google Scholar 

  4. F. Maurel, A. Perrier, and D. Jacquemin, J. Photochem. Photobiol. A: Chem. 218, 33 (2011).

    Article  Google Scholar 

  5. I. S. Park, E. J. Heo, and J. M. Kim, Tetrahedron Lett. 52, 2454 (2011).

    Article  Google Scholar 

  6. N. P. Gritsan, A. Kellmann, F. Tfibel, and L. S. Klimenko, J. Phys. Chem. A 101, 794 (1997).

    Article  Google Scholar 

  7. E. A. Pritchina, N. P. Gritsan, G. T. Burdzinski, and M. S. Platz, J. Phys. Chem. A 111, 10483 (2007).

    Article  Google Scholar 

  8. R. Born, W. Fischer, D. Heger, B. Tokarczyk, and J. Wirz, Photobiol. Sci. 6, 552 (2007).

    Article  Google Scholar 

  9. D. Ajloo, B. Yoonesi, and A. Soleymanpour, Int. J. Electrochem. Sci. 5, 459 (2010).

    Google Scholar 

  10. K. G. von Eschwege and J. C. Swarts, Polyhedron 29, 1727 (2010).

    Article  Google Scholar 

  11. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, et al., Gaussian 03, Revision E 01 (Gaussian Inc., Wallingford, CT, 2004).

    Google Scholar 

  12. W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  13. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  ADS  Google Scholar 

  14. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  15. R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett. 256, 454 (1996).

    Article  ADS  Google Scholar 

  16. N. M. O. Boyle, A. L. Tenderholt, and K. M. Langer, J. Comput. Chem. 29, 839 (2008).

    Article  Google Scholar 

  17. B. Kosar and C. Albayrak, Spectrochim. Acta A 87, 160 (2011).

    Article  ADS  Google Scholar 

  18. M. E. Casida, K. C. Casida, and D. R. Salahub, Int. J. Quantum Chem. 70, 933 (1998).

    Article  Google Scholar 

  19. E. Cances, B. Mennucci, and J. Tomasi, J. Chem. Phys. 107, 3032 (1997).

    Article  ADS  Google Scholar 

  20. X. N. Li, X. J. Liu, Z. J. Wu, and H. J. Zhang, J. Phys. Chem. A 112, 11190 (2008).

    Article  Google Scholar 

  21. H.-Y. Wang, L- F. Chen, X.-L. Zhu, C. Wang, Y. Wan, and H. Wu, Spectrochim. Acta A 121, 355 (2014).

    Article  ADS  Google Scholar 

  22. A. Kanaani, D. Ajloo, H. Kiyani, and M. Farahani, J. Mol. Struct. 1063, 30 (2014).

  23. T. Joseph, H. T. Varghese, C. Y. Panicker, T. Thiemann, K. Viswanathan, and C. V. Alsenoy, J. Mol. Struct. 1005, 17 (2011).

    Article  ADS  Google Scholar 

  24. M. Adant, L. Dupuis, and L. Bredas, Int. J. Quantum. Chem. 56, 497 (2004).

    Article  Google Scholar 

  25. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  26. J. Padmanabhan, R. Parthasarathi, V. Subramanian, and P. K. Chattaraj, J. Phys. Chem. A 111, 1358 (2007).

    Article  Google Scholar 

  27. R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, J. Chem. Phys. 68, 3801 (1978).

    Article  ADS  Google Scholar 

  28. Y. Li and J. N. S. Evans, J. Am. Chem. Soc. 117, 7756 (1995).

    Article  Google Scholar 

  29. S. W. Benson, The Foundations of Chemical Kinetics (McGraw-Hill, New York, 1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Ajloo.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanaani, A., Ajloo, D., Kiyani, H. et al. Synthesis, spectroscopic investigations, and computational study of 4-((9,10-dioxo-9,10-dihydroanthracen-1-yl)oxy)-3-methoxybenzaldehyde. Opt. Spectrosc. 121, 246–252 (2016). https://doi.org/10.1134/S0030400X16080038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X16080038

Navigation