Skip to main content
Log in

Surface plasmons in porous gold films

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The surface plasmon resonance effects in porous gold (por-Au) films—nanocomposite porous films containing an ensemble of disordered gold nanoparticles—have been investigated by modulation-polarization spectroscopy. Por-Au films have been obtained by pulsed laser deposition (using a direct particle flow from an erosion torch formed by a YAG:Nd3+ laser in argon). The spectral and angular dependences of the polarization difference ρ(λ, θ) of internal-reflection coefficients of s- and p-polarized radiation in the Kretschmann geometry and the spectral dependences of isotropic reflection angles at ρ(θ) = 0 are measured. Two types of surface plasmon resonance are found: one occurs on isolated nanoparticles (dipole and multipole modes), and the other is due to the dipole–dipole interaction of neighboring nanoparticles. The frequency of electron plasma oscillations for the nanoparticle ensemble and the frequencies and decay parameters of resonances are determined. Dispersion relations for the radiative and nonradiative modes are presented. The negative sign of the dispersion branch of nonradiative modes of dipole–dipole interaction is explained by the spatial dispersion of permittivity. The relationships between the formation conditions of the films, their structure, and established resonance parameters (determining the resonant-optical properties of films) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Kreibig and M. Volmer, Springer Ser. Mater. Sci. 25 (1995).

  2. E. F. Venger, F. V. Goncharenko, and N. L. Dmitruk, Optics of Small Particles and Disperse Media (Naukova Dumka, Kiev, 1999) [in Russian].

    Google Scholar 

  3. A. Maier, Plasmonic Fundamentals and Application (Springer, UK, 2007).

    Google Scholar 

  4. N. L. Dmitruk and S. Z. Malinich, Ukr. Fiz. Zh. 9, 3 (2014).

    Google Scholar 

  5. N. J. Halas, S. Lal, W-S. Chang, S. Link, and P. Nordlander, Chem. Rev. 111, 3913 (2011).

    Article  Google Scholar 

  6. E. le Ru and P. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, Amsterdam, 2009), p. 663.

    Google Scholar 

  7. M. Quinten, Appl. Phys. B 73, 245 (2001).

    Article  ADS  Google Scholar 

  8. J. B. Khurgin and G. Sun, Appl. Phys. Lett. 94, 221111 (2009).

    Article  ADS  Google Scholar 

  9. Y. Nishijima, L. Rosa, and S. Juodkazic, Opt. Express 20, 11466 (2012).

    Article  ADS  Google Scholar 

  10. A. V. Kabashin and M. Meunier, Recent Advances in Laser Processing of Materials (Elsevier, Amsterdam, 2006).

    Google Scholar 

  11. E. B. Kaganovich, S. A. Kravchenko, I. M. Krishchenko, and E. G. Manoilov, Fiz. Khim. Tverd. Tela 14, 649 (2013).

    Google Scholar 

  12. E. B. Kaganovich, I. M. Krishchenko, E. G. Manoilov, N. P. Maslak-Gudima, and V. V. Kremenitskii, Nanosist., Nanomater., Nanotekhnol. 10, 859 (2012).

    Google Scholar 

  13. V. P. Klad’ko, A. I. Gudimenko, S. B. Kryvyi, P. M. Litvin, E. B. Kaganovich, I. M. Krishchenko, and E. G. Manoilov, Ukr. Fiz. Zh. 59, 917 (2014).

    Google Scholar 

  14. E. B. Kaganovich, I. M. Krishchenko, S. A. Kravchenko, E. G. Manoilov, B. O. Golichenko, A. F. Kolomys, and V. V. Strelchuk, Opt. Spectrosc. 118, 294 (2015).

    Article  ADS  Google Scholar 

  15. L. I. Berezhinskii, L. S. Maksimenko, I. E. Matyash, S. P. Rudenko, and B. K. Serdega, Opt. Spectrosc. 105, 257 (2008).

    Article  ADS  Google Scholar 

  16. L. I. Berezhinskii, O. S. Litvin, L. S. Maksimenko, I. E. Matyash, S. P. Rudenko, and B. K. Serdega, Opt. Spectrosc. 107, 264 (2009).

    Article  ADS  Google Scholar 

  17. L. Fedorenko, I. Matyash, Z. Kazantseva, S. Rudenko, and Ya. Kolomiychenko, Appl. Surf. Sci. 290, 1 (2014).

    Article  ADS  Google Scholar 

  18. B. K. Serdega, S. P. Rudenko, L. S. Maksimenko, and I. E. Matyash, in Polarimetric Detection, Characterization and Remote Sensing, Proceedings of the NATO Advanced Study Institute on Special Detection Technique (Polarimetry) and Remote Sensing, Kyiv, Ukraine, Sept. 12–25, 2010 (Springer, Heidelberg, 2011), p. 473.

    Book  Google Scholar 

  19. V. M. Agranovich and Yu. N. Garshtein, Phys. Usp. 49, 1029 (2006).

    Article  ADS  Google Scholar 

  20. T. Yang and K. B. Crozier, Opt. Express 16, 8570 (2008).

    Article  ADS  Google Scholar 

  21. N. R. Agarwal, F. Neri, S. Trusso, A. Lucotti, and P. M. Ossi, Appl. Surf. Sci. 258, 9148 (2012).

    Article  ADS  Google Scholar 

  22. V. V. Strelchuk, O. F. Kolomys, E. B. Kaganovich, I.M. Krishchenko, B. O. Golichenko, M. I. Boyko, S. O. Kravchenko, I. V. Kruglenko, O. S. Lytvyn, and E. G. Manoilov, J. Nanomater. 2015, 1 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Serdega.

Additional information

Original Russian Text © S.P. Rudenko, M.O. Stetsenko, I.M. Krishchenko, L.S. Maksimenko, E.B. Kaganovich, B.K. Serdega, 2016, published in Optika i Spektroskopiya, 2016, Vol. 120, No. 4, pp. 569–575.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudenko, S.P., Stetsenko, M.O., Krishchenko, I.M. et al. Surface plasmons in porous gold films. Opt. Spectrosc. 120, 540–545 (2016). https://doi.org/10.1134/S0030400X16040202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X16040202

Keywords

Navigation