Skip to main content
Log in

Luminescence self-quenching in praseodymium-doped double sodium-yttrium fluoride cubic crystals (Na0.4Y0.6F2.2:Pr3+)

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

An Erratum to this article was published on 27 May 2015

Abstract

Energy transfer processes between praseodymium dopant ions, which are responsible for the luminescence self-quenching in crystals Na0.4Y0.6F2.2:Pr3+ (NYF:Pr3+; Pr = 0.4–9%), have been investigated experimentally and theoretically. Using methods of kinetic spectroscopy with selective excitation, the praseodymium luminescence decay kinetics from the levels 3 P 0,1 and 1 D 2 selectively excited by nanosecond laser pulses has been studied. Based on model quantum-mechanical calculations, interionic interaction microparameters have been determined theoretically and mechanisms that are responsible for the interaction of praseodymium ions by particular most likely energy transfer schemes have been elucidated. Energy transfer macrorates (of migration and quenching) have been found, and the values obtained have been used as parameters for calculation of the decay dynamics of the excited 1 D 2 and 3 P 0,1 levels of praseodymium ions. It has been shown that luminescence self-quenching from the 1 D 2 level in NYF:Pr3+ crystals can be described well in terms of the model of static ordered decay in the presence of dipole-dipole and dipole-quadrupole interactions. The luminescence self-quenching from the 3 P 0,1 levels is mainly determined by the dipole-dipole interaction, and it also can be described in terms of the model of the static ordered decay. Good agreement has been obtained between experimental and calculated kinetic dependences that characterize energy transfer processes in NYF:Pr3+ crystals in relation to the concentration of doping ions. Based on the obtained data, it has been concluded that investigated crystals of a certain composition are promising for use in quantum electronics and optical converters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Sommerdijk, A. Bril, and A. W. de Jager, J. Luminesc. 8(4), 341 (1974).

    Article  Google Scholar 

  2. T. Sandrock, E. Heumann, G. Huber, and B. H. T. Chai, in Advanced Solid-State Lasers Conference, Ed. by S. A. Payne and C. Pollack (OSA TOP, 1996), Vol. 1, pp. 550–553.

    Google Scholar 

  3. P. W. Binun, T. L. Boyd, M. A. Pessot, D. H. Tanimoto, D. E. Hargis, Opt. Lett. 21(23), 1915 (1996).

    Article  ADS  Google Scholar 

  4. A. A. Kaminskii, A. I. Lyashenko, N. P. Isaev, V. N. Karlov, V. L. Pavlovich, S. N. Bagaev, A. V. Butashin, and L. E. Li, Quantum Electron. 28, 187 (1998).

    Article  ADS  Google Scholar 

  5. E. Heumann, G. Huber, S. Kuck, E. Sani, A. Toncelli, and M. Tonelli, Appl. Phys. Lett. 82, 3832 (2003).

    Article  ADS  Google Scholar 

  6. H. Scheife, G. Huber, E. Heumann, S. Bar, and E. Osiac, Opt. Mater. 26, 365 (2004).

    Article  ADS  Google Scholar 

  7. A. Richter, E. Heumann, E. Osiac, G. Huber, W. Seelert, and A. Diening, Opt. Lett. 29, 2638 (2004).

    Article  ADS  Google Scholar 

  8. A. Richter, N. Pavel, E. Heumann, G. Huber, D. Parisi, A. Toncelli, M. Tonelli, A. Diening, and W. Seelert, Opt. Express 14, 3282 (2006).

    Article  ADS  Google Scholar 

  9. F. Cornacchia, A. Richter, E. Heumann, G. Huber, D. Parisi, and M. Tonelli, Opt. Express 15, 992 (2007).

    Article  ADS  Google Scholar 

  10. A. Richter, E. Heumann, G. Huber, V. Ostroumov, and W. Seelert, Opt. Express 15(3), 5172 (2007).

    Article  ADS  Google Scholar 

  11. P. Camy, J. L. Doualan, R. Moncorge, J. Bengoechea, and U. Weichmann, Opt. Lett. 32, 1462 (2007).

    Article  ADS  Google Scholar 

  12. N. O. Hansen, A.-R. Bellancourt, U. Weichmann, and G. Huber, Appl. Opt. 49(20), 3864 (2010).

    Article  ADS  Google Scholar 

  13. F. Cornacchia, A. Di Lieto, M. Tonelli, A. Richter, E. Heumann, and G. Huber, Opt. Express 16(20), 15932 (2008).

    Article  ADS  Google Scholar 

  14. A. Richter, Ph. D. Thesis (University of Hamburg, Göttingen, 2008).

  15. M. Fechner, N.-O. Hansen, A. Richter, E. Heumann, and G. Huber, EPS-QEOD Europhoton Conference (Talk FROA 1,Paris, 2008).

    Google Scholar 

  16. T. Gun, P. Metz, and G. Huber, Opt. Lett. 36(6), 1002 (2011).

    Article  ADS  Google Scholar 

  17. B. Xu, P. Camy, J.-L. Doualan, Z. Cai, and R. Moncorge, Opt. Express 19(2), 1191 (2011).

    Article  ADS  Google Scholar 

  18. T. Trupke and M. A. Green, J. Appl. Phys. 92(3), 1668 (2002).

    Article  ADS  Google Scholar 

  19. C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, and I. Tobias, Sol. Energy Mater. Sol. Cells 91(4), 238 (2007).

    Article  Google Scholar 

  20. J. T. Van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, Phys. Rev. 81, 155112 (2010).

    Article  Google Scholar 

  21. D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Menard, and R. Moncorge, Opt. Mater. (2010). DOI: 10.1016/j.optmat.2010.07.023

    Google Scholar 

  22. S. E. Ivanova, A. M. Tkachuk, M.-F. Joubert, Y. Guyot, and S. Guy, Opt. Spectrosc. 89(4), 535 (2000).

    Article  ADS  Google Scholar 

  23. D. N. Karminov, M. Kirm, V. N. Markov, T. V. Ouvarova, S. Vielhauer, and G. Zimmerer, Opt. Mater. 16, 437 (2001).

    Article  ADS  Google Scholar 

  24. A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, Y. Guyot, and V. P. Gapontzev, J. Alloys Comp. 380, 130 (2004).

    Article  Google Scholar 

  25. A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, and Y. Guyot, Opt. Spectrosc. 97(2), 251 (2004).

    Article  ADS  Google Scholar 

  26. S. E. Ivanova, A. M. Tkachuk, M.-F. Joubert, Y. Guyot, V. P. Gapontsev, OSA TOPS ASSP 98, 80 (2005).

    Google Scholar 

  27. A. M. Tkachuk, S. E. Ivanova, G. E. Novikov, and V. P. Gapontzev, in Proceedings of the MICS Conference (2009), PO9, pp. 1–4.

    Google Scholar 

  28. S. E. Ivanova, A. M. Tkachuk, A. Mirzaeva, and F. Pellé, Opt. Spectrosc. 105(2), 228 (2008).

    Article  ADS  Google Scholar 

  29. A. M. Tkachuk, S. E. Ivanova, A. A. Mirzaeva, and F. Pellé, Opt. Spectrosc. 111(6), 919 (2011).

    Article  Google Scholar 

  30. H. Chou, P. Albers, A. Cassanho, and H. P. Jenssen, Springer Series. Opt. Sci. 6(9), 325 (1986).

    Google Scholar 

  31. Kh. S. Bagdasarov, A. A. Kaminskii, and B. P. Sobolev, Kristallografiya 13, 779 (1969).

    Google Scholar 

  32. A. M. Tkachuk, S. E. Ivanova, A. A. Mirzaeva, M.-F. Joubert, and Y. Guyot, Opt. Spectrosc. 116(3), 392 (2014).

    Article  ADS  Google Scholar 

  33. Yu. E. Perlin, A. M. Tkachuk, and S. I. Klokishner, Opt. Cpektrosk. 55, 3 (1983).

    ADS  Google Scholar 

  34. A. M. Tkachuk, S. I. Klokishner, and M. V. Petrov, Opt. Spektrosk. 59,(4), 802 (1985).

    Google Scholar 

  35. A. M. Tkachuk and S. I. Klokishner, Opt. Spektrosk. 61, 84 (1986).

    Google Scholar 

  36. S. I. Klokishner and A. M. Tkachuk, Opt. Spektrosk. 68, 745 (1990).

    Google Scholar 

  37. A. M. Tkachuk, Opt. Spektrosk. 68, 1324 (1990).

    Google Scholar 

  38. A. M. Tkachuk, I. K. Razumova, M.-F. Joubert, R. Moncorge, D. I. Mironov, and A. A. Nikitichev, Opt. Spectrosc. 85(6), 965 (1998).

    Google Scholar 

  39. A. M. Tkachuk, I. K. Razumova, E. Yu. Perlin, M.-F. Joubert, R. Moncorge, Opt. Spectrosc. 90(1), 78 (2001).

    Article  ADS  Google Scholar 

  40. A. M. Tkachuk, S. I. Klokishner, A. V. Poletimova, L. M. Mogileva, and M. V. Petrov, Opt. Spektrosk. 60, 1201 (1986).

    Google Scholar 

  41. A. M. Tkachuk, Izv. Akad. Nauk SSSR 49(10), 1959 (1985).

    MathSciNet  Google Scholar 

  42. A. M. Tkachuk, S. I. Klokishner, A. V. Poletimova, et al., Opt. Spektrosk. 59, 1239 (1985).

    Google Scholar 

  43. A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, Y. Guyot, and S. Guy, J. Lumin. 94–95, 343 (2001).

    Article  Google Scholar 

  44. A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, and Y. Guyot, Opt. Spectrosc. 99(6), 932 (2005).

    Article  ADS  Google Scholar 

  45. S. E. Ivanova, A. M. Tkachuk, A. Mirzaeva, and F. Pellé, Opt. Spektrosk. 106(6), 836 (2009).

    Article  ADS  Google Scholar 

  46. A. M. Tkachuk, A. V. Poletimova, M. A. Petrova, V. Yu. Egorov, and N. E. Korolev, Opt. Spektrosk. 70, 1230 (1991).

    Google Scholar 

  47. M. V. Zamoryanskaya, L. G. Morozova, A. V. Poletimova, et al., Zh. Prikl. Spektrosk. 55(6), 1010 (1991).

    Google Scholar 

  48. A. I. Burshtein, Zh. Eksp. Teor. Fiz. 84, 2001 (1983).

    Google Scholar 

  49. A. I. Burshtein and V. P. Sackun, Chem. Phys. Lett. 103, 205 (1983).

    Article  ADS  Google Scholar 

  50. B. E. Vugmeister, Fiz. Tverd. Tela 25, 2796 (1983).

    Google Scholar 

  51. Yu. K. Voron’ko, T. G. Mamedov, and V. V. Osiko, Zh. Eksp. Teor. Fiz. 71(2), 478 (1976).

    ADS  Google Scholar 

  52. T. Kushida, Izv. Akad. Nauk SSSR 37(2), 273 (1973).

    Google Scholar 

  53. M. Inokuti and F. Hirayama, J. Chem. Phys. 43, 1978 (1965).

    Article  ADS  Google Scholar 

  54. J. C. W. Grant, Phys. Rev. B 4, 648 (1971).

    Article  ADS  Google Scholar 

  55. I. A. Bondar’, A. I. Burshtein, A. V. Krutikov, et al., Zh. Eksp. Teor. Fiz. 81(1), 6 (1981).

    Google Scholar 

  56. Th. Forster, Ann. Phys. (New York) 2, 55 (1948).

    ADS  Google Scholar 

  57. D. I. Dexter, J. Chem. Phys. 21(5), 836 (1953).

    Article  ADS  Google Scholar 

  58. E. N. Bodunov and V. A. Malyshev, Opt. Spektrosk. 62, 1280 (1987).

    Google Scholar 

  59. E. N. Bodunov, Opt. Spektrosk. 73, 518 (1993).

    Google Scholar 

  60. E. N. Bodunov, Opt. Spectrosc. 81, 365 (1996).

    ADS  Google Scholar 

  61. S. I. Boldyrev, R. V. Dumbrovyanu, and Yu. E. Perlin, Fiz. Tverd. Tela 23, 787 (1981).

    Google Scholar 

  62. V. Ya. Gamurar’, Yu. E. Perlin, and B. S. Tsukerblat, Fiz. Tverd. Tela 11(5), 1193 (1968).

    Google Scholar 

  63. B. R. Judd, Phys. Rev. 127, 750 (1963).

    Article  ADS  Google Scholar 

  64. G. S. Ofelt, J. Chem. Phys. 37(3), 511 (1962).

    Article  ADS  Google Scholar 

  65. V. A. Malyshev, in Spectroscopy of Crystals (Nauka, Leningrad, 1985), pp. 100–117 [in Russian].

    Google Scholar 

  66. Yu. E. J. Perlin, J. Lumin. 21, 119 (1979).

    Article  Google Scholar 

  67. M. G. Blazha, D. I. Vylegzhanin, and A. A. Kaminskii, Izv. Akad. Nauk SSSR 40(9), 1851 (1976).

    Google Scholar 

  68. A. Richter, E. Heumann, E. Osiac, G. Huber, W. Seelert, and A. Diening, Opt. Lett. 29(22), 2638 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Tkachuk.

Additional information

Original Russian Text © A.M. Tkachuk, S.E. Ivanova, A.A. Mirzaeva, M.-F. Joubert, Y. Guyot, 2015, published in Optika i Spektroskopiya, 2015, Vol. 118, No. 3, pp. 414–433.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachuk, A.M., Ivanova, S.E., Mirzaeva, A.A. et al. Luminescence self-quenching in praseodymium-doped double sodium-yttrium fluoride cubic crystals (Na0.4Y0.6F2.2:Pr3+). Opt. Spectrosc. 118, 393–411 (2015). https://doi.org/10.1134/S0030400X15030212

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X15030212

Keywords

Navigation