Skip to main content
Log in

Enhancement of the fluorescence of triphenylmethane dyes caused by their interaction with nanoparticles from β-diketonate complexes

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We have studied the absorption and fluorescence spectra of Malachite Green and Crystal Violet in aqueous and alcoholic-aqueous solutions in which nanoparticles from Ln(III) and Sc(III) diketonates are formed at concentrations of complexes in a solution of 5–30 μM. We have shown that, if the concentrations of the dyes in the solution are lower than 0.5 μM, dye molecules are incorporated completely into nanoparticles or are precipitated onto their surface. The fluorescence intensity of these incorporated and adsorbed Malachite Green and Crystal Violet molecules increases by several orders of magnitude compared to the solution, which takes place because of a sharp increase in the fluorescence quantum yields of these dyes and at the expense of the sensitization of their fluorescence upon energy transfer from β-diketonate complexes entering into the composition of nanoparticles. We have shown that, if there is no concentration quenching, the values of the fluorescence quantum yield of the Crystal Violet dye incorporated into nanoparticles and adsorbed on their surface vary from 0.06 to 0.13, i.e., are close to the fluorescence quantum yield of this dye in solid solutions of sucrose acetate at room temperature. The independence of the fluorescence quantum yield of Crystal Violet on the morphology of nanoparticles testifies to a high binding constant of complexes and the dye. The considerable fluorescence quantum yields of triphenylmethane dyes in nanoparticles and sensitization of their fluorescence by nanoparticle-forming complexes make it possible to determine the concentration of these dyes in aqueous solutions by the luminescent method in the range of up to 1 nM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Dudar’, E. B. Sveshnikova, and V. L. Ermolaev, Opt. Spectrosc. 104(2), 225 (2008).

    Article  ADS  Google Scholar 

  2. S. S. Dudar’, E. B. Sveshnikova, and V. L. Ermolaev, Opt. Spectrosc. 104(5), 724 (2008).

    Article  ADS  Google Scholar 

  3. V. L. Ermolaev and E. B. Sveshnikova, Russ. Chem. Rev. 81(9), 769 (2012).

    Article  Google Scholar 

  4. M. A. Haidekker and E. A. Theodorakis, J. Biol. Eng. 4, 11 (2010).

    Article  Google Scholar 

  5. M. S. Baptista and G. I. Indig, J. Phys. Chem. B 102, 4678 (1998).

    Article  Google Scholar 

  6. K. M. Abedin, J. Y. Ye, et al., J. Chem. Phys. 103, 6414 (1995).

    Article  ADS  Google Scholar 

  7. J. R. Babendure, S. R. Adams, and R. Y. Tsien, J. Am. Chem. Soc. 125, 14717 (2003).

    Google Scholar 

  8. M. A. Bell, B. Crystall, G. Rumbles, G. Porter, and D. R. Klug, Chem. Phys. Lett. 221, 15 (1994).

    Article  ADS  Google Scholar 

  9. F. R. Beierlein, A. M. Krause, et al., Langmuir 29, 11898 (2013).

    Article  Google Scholar 

  10. P. Fita, A. Punzi, and E. Vauthey, J. Phys. Chem. 113, 20705 (2009).

    Google Scholar 

  11. P. Sen, S. Yamaguchi, and T. Tahara, Farad. Disc. 145, 411 (2010).

    Article  ADS  Google Scholar 

  12. H. Nakatsuka, M. Hirai, et al., J. Appl. Phys. 38, L324 (1999).

    Article  ADS  Google Scholar 

  13. E. B. Sveshnikova, S. S. Dudar’, and V. L. Ermolaev, Opt. Spectrosc. 110(2), 256 (2011).

    Article  ADS  Google Scholar 

  14. E. B. Sveshnikova, S. S. Dudar’, L. Yu. Mironov, and V. L. Ermolaev, Opt. Spectrosc. 113(2), 115 (2012).

    Article  ADS  Google Scholar 

  15. R. Sens and K. H. Drexhage, J. Lumin. 24/25, 709 (1981).

    Article  Google Scholar 

  16. A. M. Brouwer, Pure Appl. Chem. 83(12), 2213 (2011).

    Article  Google Scholar 

  17. S. S. Dudar’, E. B. Sveshnikova, V. L. Ermolaev, E. V. Mamonchikov, and A. V. Gulyaev, Opt. Spectrosc. 107(1), 77 (2009).

    Article  ADS  Google Scholar 

  18. E. B. Sveshnikova, S. S. Dudar’, S. N. Ageev, and V. L. Ermolaev, Opt. Spectrosc. 100(2), 228 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Ermolaev.

Additional information

Original Russian Text © E.B. Sveshnikova, V.L. Ermolaev, 2014, published in Optika i Spektroskopiya, 2014, Vol. 117, No. 2, pp. 233–239.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sveshnikova, E.B., Ermolaev, V.L. Enhancement of the fluorescence of triphenylmethane dyes caused by their interaction with nanoparticles from β-diketonate complexes. Opt. Spectrosc. 117, 220–227 (2014). https://doi.org/10.1134/S0030400X14080219

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X14080219

Keywords

Navigation