Skip to main content
Log in

Changes in the Activities and Contents of Individual Forms of Proteasomes in Samples of the Cerebral Cortex during Pathology Development in 5xFAD Mice

  • CELL MOLECULAR BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—The ubiquitin-proteasome system (UPS) provides hydrolysis of most intracellular proteins in proteasomes. There are various forms of proteasomes that differ, among other things, in the set of proteolytic subunits and the presence of activators. Alzheimer’s disease (AD) is characterized by disturbances in the functional state of the UPS. At the same time, an increase in the expression of certain forms of proteasomes, in particular, proteasomes containing immune subunits (nonconstitutive proteasomes), has been shown. Here, we studied dynamic changes in the expression of catalytic proteasome subunit genes and corresponding proteins in the cerebral cortex of animals using a mouse model of AD (5xFAD transgenic mice). Increases by 4 and 6 folds in transcripts of the PSMB9 and PSMB8 genes encoding immune proteasome subunits were detected, as well as a significant increase in the content of immune β-subunits (by 2.8 folds, β1i; 2.2 folds, β2i) in samples from 5xFAD mice at the age of 380 days, compared with samples from mice at 60 days of age. Moreover, the activation of both 20S and 26S proteasomes containing immune subunits were revealed in samples from 380 days old 5xFAD mice by electrophoresis in native conditions. This indicates activated synthesis of the immune subunits and assembly of nonconstitutive proteasomes at the terminal stage of pathology development. The obtained data, in combination with the available literature, indicate that the activation of nonconstitutive proteasomes is a universal phenomenon characteristic of various animal models of AD, which may reflect both the development of neuroinflammation and adaptive processes in tissues induced by the accumulation of toxic protein aggegates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Ciechanover A., Kwon Y.T. 2015. Degradation of misfolded proteins in neurodegenerative diseases: Therapeutic targets and strategies. Exp. Mol. Med. 47, e147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Morozov A.V., Karpov V.L. 2018. Biological consequences of structural and functional proteasome diversity. Heliyon. 4, e00894.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kovacs G.G. 2017. Concepts and classification of neurodegenerative diseases. Handb. Clin. Neurol. 145, 301‒307.

    Article  PubMed  Google Scholar 

  4. Fernández-Cruz I., Reynaud E. 2021. Proteasome subunits involved in neurodegenerative diseases. Arch. Med. Res. 52, 1–14.

    Article  PubMed  Google Scholar 

  5. Schmidt M.F., Gan Z.Y., Komander D., Dewson G. 2021. Ubiquitin signalling in neurodegeneration: Mechanisms and therapeutic opportunities. Cell Death Differ. 28, 570–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dantuma N.P., Bott L.C. 2014. The ubiquitin–proteasome system in neurodegenerative diseases: Precipitating factor, yet part of the solution. Front. Mol. Neurosci. 7, 70.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Thibaudeau T.A., Anderson R.T., Smith D.M. 2018. A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nat. Commun. 9, 1097.

    Article  PubMed  PubMed Central  Google Scholar 

  8. d’Errico P., Meyer-Luehmann M. 2020. Mechanisms of pathogenic Tau and Aβ protein spreading in Alzheimer’s disease. Front. Aging Neurosci. 12, 265.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hegde A.N., Smith S.G., Duke L.M., Pourquoi A., Vaz S. 2019. Perturbations of ubiquitin–proteasome-mediated proteolysis in aging and Alzheimer’s disease. Front. Aging Neurosci. 11, 324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Keller J.N., Hanni K.B., Markesbery W.R. 2001. Impaired proteasome function in Alzheimer’s disease. J. Neurochem. 75, 436–439.

    Article  Google Scholar 

  11. Almeida C.G., Takahashi R.H., Gouras G.K. 2006. Beta-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin–proteasome system. J. Neurosci. 26, 4277–4288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oh S., Hong H.S., Hwang E., Sim H.J., Lee W., Shin S.J., Mook-Jung I. 2005. Amyloid peptide attenuates the proteasome activity in neuronal cells. Mech. Ageing Dev. 126, 1292–1299.

    Article  CAS  PubMed  Google Scholar 

  13. Tseng B.P., Green K.N., Chan J.L., Blurton-Jones M., LaFerla F.M. 2008. Abeta inhibits the proteasome and enhances Amyloid and Tau accumulation. Neurobiol. Aging. 29, 1607–1618.

    Article  CAS  PubMed  Google Scholar 

  14. Song S., Kim S.Y., Hong Y.M., Jo D.G., Lee J.Y., Shim S.M., Chung C.W., Seo S.J., Yoo Y.J., Koh J.Y., Lee M.C., Yates A.J., Ichijo H., Jung Y.K. 2003. Essential role of E2-25K/Hip-2 in mediating amyloid-beta neurotoxicity. Mol. Cell. 12, 553–563.

    Article  CAS  PubMed  Google Scholar 

  15. Song S., Lee H., Kam T.I., Tai M.L., Lee J.Y., Noh J.Y., Shim S.M., Seo S.J., Kong Y.Y., Nakagawa T., Chung C.W., Choi D.Y., Oubrahim H., Jung Y.K. 2008. E2-25K/Hip-2 regulates caspase-12 in ER stress-mediated Aβ neurotoxicity. J. Cell Biol. 182, 675–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Y., Hettinger C.L., Zhang D., Rezvani K., Wang X., Wang H. 2014. The proteasome function reporter GFPu accumulates in young brains of the APPswe/PS1dE9 Alzheimer’s disease mouse model. Cell Mol. Neurobiol. 34, 315–322.

    Article  PubMed  Google Scholar 

  17. Orre M., Kamphuis W., Dooves S., Kooijman L., Chan E.T., Kirk C.J., Dimayuga Smith V., Koot S., Mamber C., Jansen A.H., Ovaa H., Hol E.M. 2013. Reactive glia show increased immunoproteasome activity in Alzheimer’s disease. Brain. 136, 1415–1431.

    Article  PubMed  Google Scholar 

  18. Guglielmotto M., Monteleone D., Vasciaveo V., Repetto I.E., Manassero G., Tabaton M., Tamagno E. 2017. The decrease of Uch-L1 activity is a common mechanism responsible for Aβ 42 accumulation in Alzheimer’s and vascular disease. Front. Aging Neurosci. 9, 320.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kaneko M., Koike H., Saito R., Kitamura Y., Okuma Y., Nomura Y. 2010. Loss of HRD1-mediated protein degradation causes amyloid precursor protein accumulation and amyloid-beta generation. J. Neurosci. 30, 3924–3932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bonet-Costa V., Pomatto L.C.-D., Davies K.J.A. 2016. The proteasome and oxidative stress in Alzheimer’s disease. Antioxid. Redox Signal. 25, 886–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lloret A., Badia M.C., Giraldo E., Ermak G., Alonso M.D., Pallardó F.V., Davies K.J., Viña J. 2011. Amyloid-β toxicity and tau hyperphosphorylation are linked via RCAN1 in Alzheimer’s disease. J. Alzheimers Dis. 27, 701–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Keck S., Nitsch R., Grune T., Ullrich O. 2003. Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J. Neurochem. 85, 115–122.

    Article  CAS  PubMed  Google Scholar 

  23. Mishto M., Bellavista E., Santoro A., Stolzing A., Ligorio C., Nacmias B., Spazzafumo L., Chiappelli M., Licastro F., Sorbi S., Pession A., Ohm T., Grune T., Franceschi C. 2006. Immunoproteasome and LMP2 polymorphism in aged and Alzheimer’s disease brains. Neurobiol. Aging. 27, 54–66.

    Article  CAS  PubMed  Google Scholar 

  24. Jawhar S., Trawicka A., Jenneckens C., Bayer T.A., Wirths O. 2012. Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Aβ aggregation in the 5xFAD mouse model of Alzheimer’s disease. Neurobiol. Aging. 33, 196.e29–40.

    Article  CAS  PubMed  Google Scholar 

  25. Oakley H., Cole S.L., Logan S., Maus E., Shao P., Craft J., Guillozet-Bongaarts A., Ohno M., Disterhoft J., Van Eldik L., Berry R., Vassar R. 2006. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: Potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Richard B.C., Kurdakova A., Baches S., Bayer T.A., Weggen S, Wirths O. 2015. Gene dosage dependent aggravation of the neurological phenotype in the 5xFAD mouse model of Alzheimer’s disease. J. Alzheimers Dis. 45, 1223–1236.

    Article  CAS  PubMed  Google Scholar 

  27. Funikov S.Yu. Spasskaya D.S., Burov A.V., Teterina E.V., Ustyugov A.A., Karpov V.L., Morozov A.V. 2021. Structures of the mouse central nervous system contain different quantities of proteasome gene transcripts. Mol. Biol. (Moscow). 55, 47–55.

    Article  CAS  Google Scholar 

  28. Morozov A.V., Astakhova T.M., Garbuz D.G., Krasnov G.S., Bobkova N.V., Zatsepina O.G., Karpov V.L., Evgen’ev M.B. 2017. Interplay between recombinant Hsp70 and proteasomes: proteasome activity modulation and ubiquitin-independent cleavage of Hsp70. Cell. Stress Chaperones. 22, 687–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morozov A., Astakhova T., Erokhov P., Karpov V. 2022. The ATP/Mg2+ balance affects the degradation of short fluorogenic substrates by the 20S proteasome. Methods Protoc. 5, 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Erokhov P.A., Lyupina Y.V., Radchenko A.S., Kolacheva A.A., Nikishina Y.O., Sharova N.P. 2017. Detection of active proteasome structures in brain extracts: Proteasome features of August rat brain with violations in monoamine metabolism. Oncotarget. 8, 70941–70957.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hardy J., Selkoe D.J. 2002. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science. 297, 353–356.

    Article  CAS  PubMed  Google Scholar 

  32. LaFerla F.M., Green K.N., Oddo S. 2007. Intracellular amyloid-beta in Alzheimer’s disease. Nat. Rev. Neurosci. 8, 499–509.

    Article  CAS  PubMed  Google Scholar 

  33. de Vrij F.M., Fischer D.F., van Leeuwen F.W., Hol E.M. 2004. Protein quality control in Alzheimer’s disease by the ubiquitin proteasome system. Prog. Neurobiol. 74, 249–270.

    Article  CAS  PubMed  Google Scholar 

  34. Aso E., Lomoio S., López-González I., Joda L., Carmona M., Fernández-Yagüe N., Moreno J., Juvés S., Pujol A., Pamplona R., Portero-Otin M., Martín V., Díaz M., Ferrer I. 2012. Amyloid generation and dysfunctional immunoproteasome activation with disease progression in animal model of familial Alzheimer’s disease. Brain Pathol. 22, 636–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wagner L.K., Gilling K.E., Schormann E., Kloetzel P.M., Heppner F.L., Krüger E., Prokop S. 2017. Immunoproteasome deficiency alters microglial cytokine response and improves cognitive deficits in Alzheimer’s disease-like APPPS1 mice. Acta Neuropathol. Commun. 24, 52.

    Article  Google Scholar 

  36. Lemprière S. 2023. Neuroinflammation, not amyloid-β deposition, associated with brain network dysfunction in AD. Nat. Rev. Neurol. 19, 66.

    Article  PubMed  Google Scholar 

  37. Yeo I.J., Lee M.J., Baek A., Miller Z., Bhattarai D., Baek Y.M., Jeong H.J., Kim Y.K., Kim D.E., Hong J.T., Kim K.B. 2019. A dual inhibitor of the proteasome catalytic subunits LMP2 and Y attenuates disease progression in mouse models of Alzheimer’s disease. Sci. Rep. 5, 18393.

    Article  Google Scholar 

  38. Lee M.J., Bhattarai D., Jang H., Baek A., Yeo I.J., Lee S., Miller Z., Lee S., Hong J.T., Kim D.E., Lee W., Kim K.B. 2021. Macrocyclic immunoproteasome inhibitors as a potential therapy for Alzheimer’s disease. J. Med. Chem. 12, 10934–10950.

    Article  Google Scholar 

  39. Tönnies E., Trushina E. 2017. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J. Alzheimers Dis. 57, 1105–1121.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Butterfield D.A. 2002. Amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radical Res. 36, 1307–1313.

    Article  CAS  Google Scholar 

  41. Pickering A.M., Koop A.L., Teoh C.Y., Ermak G., Grune T., Davies K.J. 2010. The immunoproteasome, the 20S proteasome and the PA28αβ proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochem. J. 432, 585–595.

    Article  CAS  PubMed  Google Scholar 

  42. Bi M., Du X., Xiao X., Dai Y., Jiao Q., Chen X., Zhang L., Jiang H. 2021. Deficient immunoproteasome assembly drives gain of α-synuclein pathology in Parkinson’s disease. Redox Biol. 47, 102167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gillardon F., Kloss A., Berg M., Neumann M., Mechtler K., Hengerer B., Dahlmann B. 2007. The 20S proteasome isolated from Alzheimer’s disease brain shows post-translational modifications but unchanged proteolytic activity. J. Neurochem. 101, 1483–1490.

    Article  CAS  PubMed  Google Scholar 

  44. Bashore C., Dambacher C.M., Goodall E.A., Matyskiela M.E., Lander G.C., Martin A. 2015. Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome. Nat. Struct. Mol. Biol. 22, 712–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bech-Otschir D., Helfrich A., Enenkel C., Consiglieri G., Seeger M., Holzhütter H.G., Dahlmann B., Kloetzel P.M. 2009. Polyubiquitin substrates allosterically activate their own degradation by the 26S proteasome. Nat. Struct. Mol. Biol. 16, 219–225.

    Article  CAS  PubMed  Google Scholar 

  46. Li X., Demartino G.N. 2009. Variably modulated gating of the 26S proteasome by ATP and polyubiquitin. Biochem. J. 421, 397–404.

    Article  CAS  PubMed  Google Scholar 

  47. Collins G.A., Goldberg A.L. 2017. The logic of the 26S proteasome. Cell. 169, 792–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Peth A., Besche H.C., Goldberg A.L. 2009. Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening. Mol. Cell. 36, 794–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guo Q., Lehmer C., Martínez-Sánchez A., Rudack T., Beck F., Hartmann H., Pérez-Berlanga M., Frottin F., Hipp M.S., Hartl F.U., Edbauer D., Baumeister W., Fernández-Busnadiego R. 2018. In situ structure of neuronal C9orf72 Poly-GA aggregates reveals proteasome recruitment. Cell. 172, 696–705.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gregori L., Fuchs C., Figueiredo-Pereira M.E., Van Nostrand W.E., Goldgaber D. 1995. Amyloid beta-protein inhibits ubiquitin-dependent protein degradation in vitro. J. Biol. Chem. 270, 19702–19708.

    Article  CAS  PubMed  Google Scholar 

  51. Gregori L., Hainfeld J.F., Simon M.N., Goldgaber D. 1997. Binding of amyloid beta protein to the 20S proteasome. J. Biol. Chem. 272, 58–62.

    Article  CAS  PubMed  Google Scholar 

  52. Lopez Salon M., Pasquini L., Besio Moreno M., Pasquini J.M., Soto E. 2003. Relationship between beta-amyloid degradation and the 26S proteasome in neural cells. Exp. Neurol. 180, 131–143.

    Article  CAS  PubMed  Google Scholar 

  53. Zhao X., Yang J. 2010. Amyloid-β peptide is a substrate of the human 20S proteasome. ACS Chem. Neurosci. 1, 655–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Morozov A.V., Kulikova A.A., Astakhova T.M., Mitkevich V.A., Burnysheva K.M., Adzhubei A.A., Erokhov P.A., Evgen’ev M.B., Sharova N.P., Karpov V.L., Makarov A.A. 2016. Amyloid-β increases activity of proteasomes capped with 19S and 11S regulators. J. Alzheimers Dis. 54, 763–776.

    Article  CAS  PubMed  Google Scholar 

  55. Hirano H., Kimura Y., Kimura A. 2016. Biological significance of co- and post-translational modifications of the yeast 26S proteasome. J. Proteomics. 134, 37–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work received financial support from the Russian Science Foundation (grant no. 18-74-10095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Morozov.

Ethics declarations

Statement on the welfare of animals. Work with animals was carried out in accordance with the “Rules of laboratory practice in the Russian Federation” dated April 1, 2016 No. 199n.

Conflict of interest. The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, A.V., Burov, A.V., Funikov, S.Y. et al. Changes in the Activities and Contents of Individual Forms of Proteasomes in Samples of the Cerebral Cortex during Pathology Development in 5xFAD Mice. Mol Biol 57, 885–896 (2023). https://doi.org/10.1134/S0026893323050138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323050138

Keywords:

Navigation