Skip to main content
Log in

Overexpression of MKRN2 Inhibits the Growth of Ovarian Cancer Cells

  • MOLECULAR BIOLOGY OF THE CELL
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Ovarian cancer has a high mortality with low five-year survival rates. The role of the E3 ligase Makorin ring finger protein 2 (MKRN2) in ovarian cancer is unknown. This study investigated the impact of MKRN2 on the growth of ovarian cancer. MKRN2 expression in ovarian cancer tissue was analyzed by immunohistochemistry. Overexpression of MKRN2 was induced in two ovarian cancer cell lines (SKOV3 and CAOV3) by lentivirus transfection, and expression levels were verified by western blotting. Proliferation and growth were determined by CCK-8 and colony formation assays, while migration was examined using transwell assays and apoptosis by flow cytometry. Xenograft tumors of transfected SKOV3 cells were established in mice, and immunohistochemistry and TUNEL assays measured MKRN2 levels and apoptosis in tumor cells. Reduced levels of MKRN2 in cancerous tissue relative to non-cancerous ovarian tissues. Lentiviral-based MKRN2 overexpression in SKOV3 and CAOV3 cells reduced tumor-associated behavior while inducing apoptosis in vitro. In xenograft tumors, MKRN2 overexpression inhibited ovarian cancer growth and increased apoptosis in vivo. These findings imply the MKRN2 involvement in ovarian carcinogenesis and suggest its potential for treating the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Tew W.P., Lacchetti C., Ellis A., Maxian K., Banerjee S., Bookman M., Jones M.B., Lee J.M., Lheureux S., Liu J.F. Moore K.N., Muller C., Rodriguez P., Walsh C., Westin S.N., Kohn E.C. 2020. PARP inhibitors in the management of ovarian cancer: ASCO guideline. J. Clin. Oncol. 38 (30), 3468‒3493.

    Article  PubMed  Google Scholar 

  2. Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. 2021. Cancer statistics. CA Cancer J. Clin. 71 (1), 7–33.

    Article  PubMed  Google Scholar 

  3. Lin C.N., Tsai Y.C., Hsu C.C., Liang Y.L., Wu Y.Y., Kang C.Y., Lin C.H., Hsu P.H., Lee G.B., Hsu K.F. 2021. An aptamer interacting with heat shock protein 70 shows therapeutic effects and prognostic ability in serous ovarian cancer. Mol. Ther. Nucleic Acids. 23, 757–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lheureux S., Gourley C., Vergote I., Oza A.M. 2019. Epithelial ovarian cancer. Lancet. 393 (10177), 1240–1253.

    Article  PubMed  Google Scholar 

  5. Wolf E.J., Miles A., Lee E.S., Nabeel-Shah S., Greenblatt J.F., Palazzo A.F., Tropepe V., Emili A. 2020. MKRN2 physically interacts with GLE1 to regulate mRNA export and zebrafish retinal development. Cell Rep. 31 (8), 107693.

    Article  CAS  PubMed  Google Scholar 

  6. Böhne A., Darras A., D’Cotta H., Baroiller J.F., Galiana-Arnoux D., Volff J.N. 2010. The vertebrate makorin ubiquitin ligase gene family has been shaped by large-scale duplication and retroposition from an ancestral gonad-specific, maternal-effect gene. BMC Genomics. 11, 721.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang Q., Meng Y., Zhang L., Chen J., Zhu D. 2009. RNF13: a novel RING-type ubiquitin ligase over-expressed in pancreatic cancer. Cell Res. 19 (3), 348–357.

    Article  CAS  PubMed  Google Scholar 

  8. Ulrich H.D. 2002. Natural substrates of the proteasome and their recognition by the ubiquitin system. Curr. Topics Microbiol. Immunol. 268, 137–174.

    CAS  Google Scholar 

  9. Shin C., Ito Y., Ichikawa S., Tokunaga M., Sakata-Sogawa K., Tanaka T. 2017. MKRN2 is a novel ubiquitin E3 ligase for the p65 subunit of NF-κB and negatively regulates inflammatory responses. Sci. Rep. 7, 46097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang J., Xu Y., Ren H., Wudu M., Wang Q., Song X., Su H., Jiang X., Jiang L., Qiu X. 2018. MKRN2 inhibits migration and invasion of non-small-cell lung cancer by negatively regulating the PI3K/Akt pathway. J. Exp. Clin. Cancer Res. 37 (1), 189.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang Y., Cui N., Zheng G. 2020. Ubiquitination of P53 by E3 ligase MKRN2 promotes melanoma cell proliferation. Oncol. Lett. 19 (3), 1975–1984.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jia C., Tang H., Yang Y., Yuan S., Han T., Fang M., Huang S., Hu R., Li C., Geng W. 2020. Ubiquitination of IGF2BP3 by E3 ligase MKRN2 regulates the proliferation and migration of human neuroblastoma SHSY5Y cells. Biochem. Biophys. Res. Commun. 529 (1), 43–50.

    Article  CAS  PubMed  Google Scholar 

  13. Abreu A.P., Macedo D.B., Brito V.N., Kaiser U.B., Latronico A.C. 2015. A new pathway in the control of the initiation of puberty: the MKRN3 gene. J. Mol. Endocrinol. 54 (3), R131–R139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qian Y.C., Xie Y.X., Wang C.S., Shi Z.M., Jiang C.F., Tang Y.Y., Qian X., Wang L., Jiang B.H. 2020. Mkrn2 deficiency induces teratozoospermia and male infertility through p53/PERP-mediated apoptosis in testis. Asian J. Androl. 22 (4), 414–421.

    Article  CAS  PubMed  Google Scholar 

  15. Wadekar H.B., Sahi V.P., Morita E.H., Abe S. 2013. MKRN expression pattern during embryonic and post-embryonic organogenesis in rice (Oryza sativa L. var. Nipponbare). Planta. 237 (4), 1083–1095.

    Article  CAS  PubMed  Google Scholar 

  16. Hildebrandt A., Brüggemann M., Rücklé C., Boerner S., Heidelberger J.B., Busch A., Hänel H., Voigt A., Möckel M.M., Ebersberger S., Scholz A., Dold A., Schmid T., Ebersberger I., Roignant J.Y., Zarnack K., König J., Beli P. 2019. The RNA-binding ubiquitin ligase MKRN1 functions in ribosome-associated quality control of poly(A) translation. Genome Biol. 20 (1), 216.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Herrera R.A., Kiontke K., Fitch D.H. 2016. Makorin ortholog LEP-2 regulates LIN-28 stability to promote the juvenile-to-adult transition in Caenorhabditis elegans. Development. 143 (5), 799–809.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu M., Zhong J., Zeng Z., Huang K., Ye Z., Deng S., Chen H., Xu F., Li Q., Zhao G. 2019. Hypoxia-induced feedback of HIF-1α and lncRNA-CF129 contributes to pancreatic cancer progression through stabilization of p53 protein. Theranostics. 9 (16), 4795–4810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu Y., Sun J.Y., Jin Y.F., Yu H. 2018. PCAT6 participates in the development of gastric cancer through endogenously competition with microRNA-30. Eur. Rev. Med. Pharmacol. Sci. 22 (16), 5206–5213.

    CAS  PubMed  Google Scholar 

  20. Lee K.Y., Chan K.Y., Tsang K.S., Chen Y.C., Kung H.F., Ng P.C., Li C.K., Leung K.T., Li K. 2014. Ubiquitous expression of MAKORIN-2 in normal and malignant hematopoietic cells and its growth promoting activity. PLoS One. 9 (3), e92706.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ADDITIONAL INFORMATION

The text was submitted by the author(s) in English.

Funding

The study is funded by the National Natural Science Foundation of China (no. 81302251) and the Suzhou Science and Education Project for Youth scholars (JKXW2018078).

Author information

Authors and Affiliations

Authors

Contributions

Feizhou Jiang and Qinjian Xia have contributed equally to this work. Feizhou Jiang and Qinjian Xia designed the study, conducted experimental studies, and completed the manuscript. Lei Wu participated in the experimental studies and data analysis. Yueming Zhang supervised the work and reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Y. M. Zhang.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. In carrying out this work, all ethical standards were observed. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

This article does not contain any studies involving human participants performed by any authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, F.Z., Xia, Q.J., Wu, L. et al. Overexpression of MKRN2 Inhibits the Growth of Ovarian Cancer Cells. Mol Biol 57, 684–691 (2023). https://doi.org/10.1134/S002689332304009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689332304009X

Keywords:

Navigation