Skip to main content
Log in

Changes in Expression of Genes Associated with Calcium Processes in the Hippocampus in Mice Exposed to Chronic Social Stress

  • EVOLUTIONARY, POPULATION, AND MEDICAL GENOMICS, TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Whole-transcriptome data were used to study the changes in expression of genes coding proteins involved in the calcium regulation processes in the hippocampus of male mice with symptoms of depression caused by chronic social defeat stress. Cacna1g, Cacnb3, Camk1g, Camk2d, Camk2n2, Caly, Caln1, S100a16, and Slc24a4 genes were upregulated in the hippocampus of depressed mice compared to a control, while C-acna2d1, Cacng5, Grin2a, and Calm2 were downregulated. The greatest number of significant correlations was observed between the expression level of Calm2, which showed the highest transcriptional activity, and other differentially expressed genes. Calcium signaling in the hippocampus was assumed to be disrupted in mice exposed to chronic social defeat stress. The involvement of Calm2, Сamk1g, Camk2d, and Camk2n2 genes in the process is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Li Z., Ruan M., Chen J., Fang Y. 2021. Major depressive disorder: advances in neuroscience research and translational applications. Neurosci. Bull. 37, 863–880.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lohoff F.W. 2010. Overview of the genetics of major depressive disorder. Curr. Psychiatry Rep. 12, 539–546.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sall S.S., Thompson W., Santos A., Dwyer D.S. 2021. Analysis of major depression risk genes reveals evolutionary conservation, shared phenotypes, and extensive genetic interactions. Front. Psychiatry. 12, 698029.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mariani N., Cattane N., Pariante C., Cattaneo A. 2021. Gene expression studies in depression development and treatment: an overview of the underlying molecular mechanisms and biological processes to identify biomarkers. Translat. Psychiatry. 11, 354.

    Article  Google Scholar 

  5. Stacey D., Cohen-Woods S., Toben C., Arolt V., Dannlowski U., Baune B.T. 2013. Evidence of increased risk for major depressive disorder in individuals homozygous for the high-expressing 5-HTTLPR/rs25531 (LA) allele of the serotonin transporter promoter. Psychiatr. Genet. 23, 222–223.

    Article  PubMed  Google Scholar 

  6. Fan T., Hu Y., Xin J., Zhao M., Wang J. 2020. Analyzing the genes and pathways related to major depressive disorder via a systems biology approach. Brain Behav. 10, e01502.

    Article  PubMed  Google Scholar 

  7. Nobis A., Zalewski D., Waszkiewicz N. 2020. Peripheral markers of depression. J. Clin. Med. 9, 3793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duman R.S., Voleti B. 2012. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci. 35, 47–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Donev R., Alawam K. 2015. Alterations in gene expression in depression: prospects for personalize patient treatment. Adv. Protein Chem. Struct. Biol. 101, 97–124.

    Article  CAS  PubMed  Google Scholar 

  10. Norkeviciene A., Gocentiene R., Sestokaite A., Sabaliauskaite R., Dabkeviciene D., Jarmalaite S., Bulotiene G.A. 2022. Systematic review of candidate genes for major depression. Medicina (Kaunas). 58, 285.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Berridge M.J. 2014. Calcium signaling and psychiatric disease: bipolar disorder and schizophrenia. Cell Tissue Res. 357, 477–492.

    Article  CAS  PubMed  Google Scholar 

  12. Fairless R., Williams S.K., Diem R. 2014. Dysfunction of neuronal calcium signaling in neuroinflammation and neurodegeneration. Cell Tissue Res. 357, 455–462.

    Article  CAS  PubMed  Google Scholar 

  13. Czeredys M. 2020. Dysregulation of neuronal calcium signaling via store-operated channels in Huntington’s disease. Front. Cell Dev. Biol. 8, 611735.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Da Silva P.R., Gonzaga do N.T.K.S, Maia R.E., da Silva B.A. 2022. Ionic channels as potential targets for the treatment of autism spectrum disorder: a review. Curr. Neuropharmacol. 20, 1834–1849.

    Article  CAS  PubMed  Google Scholar 

  15. Xu J., Minobe E., Kameyama M. 2022. Ca2+ dyshomeostasis links risk factors to neurodegeneration in Parkinson’s disease. Front. Cell. Neurosci. 16, 867385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmunk G., Gargus J.J. 2013. Channelopathy pathogenesis in autism spectrum disorders. Front. Genet. 4, 222.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cortés-Mendoza J., de León-Guerrero S.D., Pedraza-Alva G., Pérez-Martínez L. 2013. Shaping synaptic plasticity: the role of activity mediated epigenetic regulation on gene transcription. Int. J. Dev. Neurosci. 6, 359–369.

    Article  Google Scholar 

  18. Berridge M.J., Lipp P., M.D., Bootman M.D. 2000. The versatility and universality of calcium signaling. Nat. Rev. Mol. Cell Biol. 1, 11–21.

    Article  CAS  PubMed  Google Scholar 

  19. Van Eldik L.J., Watterson D.M. 1998. Calmodulin and calcium signal transduction: an introduction. In Calmodulin and Signal Transduction. Van Eldik L.J., Watterson D.M., Eds. Elsevier: Academic, pp. 1–15.

    Google Scholar 

  20. Brandt P.C., Vanaman T.C. 1998. Calmodulin and ion flux regulation. In Calmodulin and Signal Transduction. Van Eldik L.J., Watterson D.M., Eds. Elsevier: Academic, pp. 397–471.

    Google Scholar 

  21. Zhang M., Abrams C., Wang L., Gizzi A., He L., Lin R., Chen Y., Loll P.J., Pascal J.M., Zhang J.-F. 2012. Structural basis for calmodulin as a dynamic calcium sensor. Structure. 20, 911–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Salińska E., Łazarewicz J.W. 2012. Role of calcium in physiology and pathology of neurons. Postepy Biochem. 58, 403–417.

    PubMed  Google Scholar 

  23. Brini M., Calì T., Ottolini D., Carafoli E. 2014. Neuronal calcium signaling: function and dysfunction. Cell. Mol. Life Sci. 71, 2787–2814.

    Article  CAS  PubMed  Google Scholar 

  24. Napolioni V., Persico A.M., Porcelli V., Palmieri L. 2011. The mitochondrial aspartate/glutamate carrier AGC1 and calcium homeostasis: physiological links and abnormalities in autism. Mol. Neurobiol. 44, 83–92.

    Article  CAS  PubMed  Google Scholar 

  25. Schmunk G., Gargus J.J. 2013. Channelopathy pathogenesis in autism spectrum disorders. Front. Genet. 4, 222.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Savitz J.B., Drevets W.C. 2009. Imaging phenotypes of major depressive disorder: genetic correlates. Neuroscience. 164, 300–330.

    Article  CAS  PubMed  Google Scholar 

  27. Grace A.A. 2016. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat. Rev. Neurosci. 17, 524–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krugers H.J., Lucassen P.J., Karst H., Joëls M. 2010. Chronic stress effects on hippocampal structure and synaptic function: relevance for depression and normalization by anti-glucocorticoid treatment. Front. Synaptic Neurosci. 2, 24.

    PubMed  PubMed Central  Google Scholar 

  29. Lagace D.C., Donovan M.H., DeCarolis N.A., Farnbauch L.A., Malhotra S., Berton O., Nestler E.J., Krishnan V., Eisch A.J. 2010. Adult hippocampal neurogenesis is functionally important for stress-induced social avoidance. Proc. Natl. Acad. Sci. U. S. A. 107, 4436–4441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Golden S.A., Covington H.E., Berton O., Russo S.J. 2011. A standardized protocol for repeated social defeat stress in mice. Nat. Protoc. 6, 1183–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kudryavtseva N.N. 2021. Development of mixed anxiety/depression-like state as a consequences of chronic anxiety: review of experimental data. Curr. Topics Behav. Neurosci. Berlin: Springer, 54, 125–152.

  32. Kudryavtseva N.N., Bakshtanovskaya I.V., Koryakina L.A. 1991. Social model of depression in mice of C57BL/6J strain. Pharmacol. Biochem. Behav. 38, 315–320.

    Article  CAS  PubMed  Google Scholar 

  33. Karst H., Joëls M. 2007. Brief RU 38486 treatment normalizes the effects of chronic stress on calcium currents in rat hippocampal CA1 neurons. Neuropsychopharmacology. 32, 1830–1839.

    Article  CAS  PubMed  Google Scholar 

  34. Smagin D.A., Bondar N.P., Kovalenko I.N., K-udryavtseva N.N., Michurina T.V., Enikolopov G., Park J.-H., Peunova N., Glass Z., Sayed K. 2015. Altered hippocampal neurogenesis and amygdalar neuronal activity in adult mice with repeated experience of aggression. Front. Neurosci. 9, 443.

    Article  PubMed  PubMed Central  Google Scholar 

  35. DeLong G.R. 1992. Autism, amnesia, hippocampus and learning. Neurosci. Biobehav. Rev. 16, 63–70.

    Article  CAS  PubMed  Google Scholar 

  36. Irle E., Ruhleder M., Lange C., Seidler-Brandler U., Salzer S., Dechent P., Weniger G., Leibing E., Leichsenring F. 2010. Reduced amygdalar and hippocampal size in adults with generalized social phobia. J. Psychiatry Neurosci. 35, 126–131.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Moon A.L., Haan N., Lawrence S. Wilkinson L.S., Thomas K.L., Hall J. 2018. CACNA1C: Association with psychiatric disorders, behavior and neurogenesis. Schizophrenia Bull. 44, 958–965.

    Article  Google Scholar 

  38. Xu W., Yao X., Zhao F., Zhao H., Cheng Z., Yang W., Cui R., Xu S., Li B. 2020. Changes in hippocampal plasticity in depression and therapeutic approaches influencing these changes. Neural Plasticity. 8861903, 16.

    Google Scholar 

  39. Schwarz K., Moessnang C., Schweiger J.I., Harneit A., Schneider M., Chen J., Cao H., Schwarz E., Witt S.H., Rietschel M., Nöthen M., Degenhardt F., Wackerhagen C., Erk S., Romanczuk-Seiferth N., Walter H., Tost H., Meyer-Lindenberg A. 2022. Ventral striatal-hippocampus coupling during reward processing as a stratification biomarker for psychotic disorders. Biol. Psychiatry. 91, 216–225.

    Article  CAS  PubMed  Google Scholar 

  40. Smagin D.A., Galyamina A.G., Kovalenko I.L., Babenko V.N., Kudryavtseva N.N. 2019. Aberrant expression of collagen gene family in the brain regions of male mice with behavioral psychopathologies induced by chronic agonistic interactions. BioMed. Res. Int. 7276389.

  41. Kovalenko I.L., Galyamina A.G., Smagin D.A., Kudryavtseva N.N. 2020. Co-expression of glutamatergic and autism spectrum genes in the hippocampus of male mice with impaired social behavior. Vavilov. Zh. Genet. Sel. 24, 191–199.

    Google Scholar 

  42. Berridge M.J., Bootman M.D., Roderick H.L. 2003. Calcium: calcium signaling: dynamics, homeostasis and remodeling. Nat. Rev. Mol. Cell Biol. 4, 517–529.

    Article  CAS  PubMed  Google Scholar 

  43. Clapham D.E. 2007. Calcium signaling. Cell. 131, 1047–1058.

    Article  CAS  PubMed  Google Scholar 

  44. Nicholls J.G., Martin A.R., Wallas B.J., Fuchs P.A. 2003. Ot neirona k mozgu. (From Neuron to Brain). Moscow: Editorial URSS.

  45. Dolgacheva L.P., Tuleukhanov S.T., Zinchenko V.P. 2020. Involvement of Ca2+-permeable AMPA receptors in synaptic plasticity. Biol. Membr.: Zh. Membr. Klet. Bio-l. 37, 175–187.

    CAS  Google Scholar 

  46. Melьnikov K.N. 2006. Diversity and properties of calcium channels in excitable membranes. Psikhofarmakol. Biol. Narkol. 6, 1139–1155.

    Google Scholar 

  47. Stratton M.M., Chao L.H., Schulman H., Kuriyan J. 2013. Structural studies on the regulation of Ca2+/calmodulin dependent protein kinase II. Curr. Opin. Struct. Biol. 23, 292–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sałaciak K., Koszałka A., Zmudzka E., Pytka K. 2021. The calcium/calmodulin-dependent kinases II and IV as therapeutic targets in neurodegenerative and neuropsychiatric disorders. Int. J. Mol. Sci. 22, 1–32.

    Article  Google Scholar 

  49. Ben-Johny M., Yue D.T. 2014. Calmodulin regulation (calmodulation) of voltage-gated calcium channels. J. Gen. Physiol. 143, 679–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lucia D., Burgess D., Cullen C.L., Dorey E.S., Rawashdeh O., Moritz K.M. 2019. Periconceptional maternal alcohol consumption leads to behavioural changes in adult and aged offspring and alters the expression of hippocampal genes associated with learning and memory and regulators of the epigenome. Behav. Brain Res. 362, 249–257.

    Article  CAS  PubMed  Google Scholar 

  51. Dedic N., Pohlmann M.L., Richter J.S., Mehta D., Czamara D., Metzger M.W., Dine J., Bedenk B.T., Hartmann J., Wagner K.V., Jurik A., Almli L.M., Lori A., Moosmang S., Hofmann F., Wotjak C.T., Rammes G., Eder M., Chen A., Ressler K.J., Wurst W., Schmidt M.V., Binder E.B., Deussing J.M. 2018. Cross-disorder risk gene CACNA1C differentially modulates susceptibility to psychiatric disorders during development and adulthood. Mol. Psychiatry. 23, 533–543.

    Article  CAS  PubMed  Google Scholar 

  52. O′Roak B.J., Vives L., Girirajan S., Karakoc E., Krumm N., Coe B.P., Levy R., Ko A., Lee C., Smith J.D.,Turner E.H., Stanaway I.B., Vernot B., Malig M.,Baker C.,Reilly B., Akey J.M., Borenstein E., Rieder M.J., Nickerson D.A., Bernier R., Shendure J., Eichler E.E. 2012. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 485, 246–250.

  53. Li B., Tadross M.R., Tsien R.W. 2016. Sequential ionic and conformational signaling by calcium channels drives neuronal gene expression. Science. 351, 863–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kessi M., Chen B., Peng J., Yan F., Yang L., Yin F. 2021. Calcium channelopathies and intellectual disability: a systematic review. Orphanet. J. Rare. Dis. 16, 219.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Andrade A., Brennecke A., Mallat S., Brown J., Rivadeneira J., Czepiel N., Londrigan L. 2019. Genetic associations between voltage-gated calcium channels and psychiatric disorders. Int. J. Mol. Sci. 20, 3537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kudryavtseva N.N., Kovalenko I.L., Smagin D.A., Galyamina A.G., Babenko V.N. 2017. Abnormality of social behavior and dysfunction of autism related gene expression developing under chronic social defeat stress in male mice. Eur. Neuropsychopharmacol. 27, S678.

    Article  Google Scholar 

Download references

Funding

This work was supported by State Program 47 “Scientific and Technological Development of the Russian Federation” (2019–2030) (project no. 0134-2019-0002) an agreement with the Institute of Cytology and Genetics SB RAS (project no. FWNR-2022-0019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. B. Pavlova or N. A. Dyuzhikova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All experiments with mice were performed in compliance with international guidelines for animal research (Directive 2010/63/EU of the European Parliament and of the Council on the Protection of Animals Used for Scientific Purposes). The study protocol (no. 9) was approved by the Ethics Committee at the Institute of Cytology and Genetics SB RAS (Minutes no. 613 dated March 24, 2010).

Additional information

Translated by T. Tkacheva

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlova, M.B., Smagin, D.A., Kudryavtseva, N.N. et al. Changes in Expression of Genes Associated with Calcium Processes in the Hippocampus in Mice Exposed to Chronic Social Stress. Mol Biol 57, 356–365 (2023). https://doi.org/10.1134/S0026893323020176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323020176

Keywords:

Navigation