Skip to main content
Log in

DNA Probes for Analysis of the Activity of Key Enzymes of the Base Excision DNA Repair Pathway in Human Cells

  • CELL MOLECULAR BIOLOGY: FROM DNA REPAIR TO METABOLOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—The important role of DNA damage in the occurrence of various diseases, including cancer, has led to study of the mechanisms of genetic information stability, that have been carried out since the discovery of DNA repair systems. The question of the relationship between the accumulation of DNA damage, disorders in DNA repair pathways, and increased risk of disease development is still relevant. Over the past few years, significant efforts have been made to develop methods for analyzing the activity of DNA repair enzymes in human cells. In this work, we developed fluorescent DNA probes that allow us to determine the activity of key enzymes of base excision DNA repair in cell extracts, namely the DNA glycosylases UNG2, SMUG1, MBD4, TDG, AAG, NEIL1, NTHL1, and OGG1 and the AP endonuclease APE1. The sensitivity of DNA probes was determined on pure enzyme preparations. Determination of the activity of repair enzymes in cell extracts of the human ovarian tumor lines TOV112, 79, OVCAR3, MESOV, SCOV3, and TOV21 revealed significant variability in the level of enzyme activity in these cell lines. These results may become a test system platform for analyzing the activity of the base excision DNA repair system in the human body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Krokan H.E., Bjørås M. 2013. Base excision repair. Cold Spring Harb. Perspect. Biol. 5, a012583.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dianov G., Price A., Lindahl T. 1992. Generation of single-nucleotide repair patches following excision of uracil residues from DNA. Mol. Cell. Biol. 12, 1605–1612.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Matsumoto Y., Bogenhagen D.F. 1994. Proliferating cell nuclear antigen-dependent abasic site repair in Xenopus laevis oocytes: an alternative pathway of base excision DNA repair. Mol. Cell. Biol. 14, 6187–6197.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Frosina G., Fortini P., Rossi O., Carrozzino F., Raspaglio G., Cox L.S., Lane D.P., Abbondandolo A., Dogliotti E. 1996. Two pathways for base excision repair in mammalian cells. J. Biol. Chem. 271, 9573–9578.

    Article  CAS  PubMed  Google Scholar 

  5. Klungland A., Lindahl T. 1997. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 16, 3341–3348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim Y.-J., Wilson D.M. III. 2012. Overview of base excision repair biochemistry. Curr. Mol. Pharmacol. 5, 3–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wiederhold L., Leppard J.B., Kedar P., Karimi-Busheri F., Rasouli-Nia A., Weinfeld M., Tomkinson A.E., Izumi T., Prasad R., Wilson S.H. 2004. AP endonuclease-independent DNA base excision repair in human cells. Mol. Cell. 15, 209–220.

    Article  CAS  PubMed  Google Scholar 

  8. Das A., Wiederhold L., Leppard J.B., Kedar P., Prasad R., Wang H., Boldogh I., Karimi-Busheri F., Weinfeld M., Tomkinson A.E., Wilson S.H, Mitra S. 2006. NEIL2-initiated, APE-independent repair of oxidized bases in DNA: evidence for a repair complex in human cells. DNA Repair (Amst.). 5, 1439–1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cleaver J.E. 1968. Defective repair replication of DNA in Xeroderma pigmentosum. DNA Repair (Amst.). 3, 183–187.

    Google Scholar 

  10. Setlow R.B., Regan J.D., German J., Carrier W.L. 1969. Evidence that Xeroderma pigmentosum cells do not perform the first step in the repair of ultraviolet damage to their DNA. DNA Repair (Amst.). 3, 188–195.

    Google Scholar 

  11. Helleday T., Eshtad S., Nik-Zainal S. 2014. Mechanisms underlying mutational signatures in human cancers. Nat. Rev. Genet. 15, 585–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grin I.R., Konorovsky P.G., Nevinsky G.A., Zharkov D.O. 2009. Heavy metal ions affect the activity of DNA glycosylases of the Fpg family. Biochemistry (Moscow). 74, 1253–1259.

    CAS  PubMed  Google Scholar 

  13. Kreklau E.L., Limp-Foster M., Liu N., Xu Y., Kelley M.R., Erickson L.C. 2001. A novel fluorometric oligonucleotide assay to measure O 6-methylguanine DNA methyltransferase, methylpurine DNA glycosylase, 8-oxoguanine DNA glycosylase and abasic endonuclease activities: DNA repair status in human breast carcinoma cells overexpressing. Nucleic Acids Res. 29, 2558–2566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dianov G.L. 2003. Monitoring base excision repair by in vitro assays. Toxicology. 193, 35–41.

    Article  CAS  PubMed  Google Scholar 

  15. Weiss J.M., Goode E.L., Ladiges W.C., Ulrich C.M. 2005. Polymorphic variation in hOgg1 and risk of cancer: a review of the functional and epidemiologic literature. Mol. Carcinog. 42, 127–141.

    Article  CAS  PubMed  Google Scholar 

  16. Lee A.J., Hodges N.J., Chipman J.K. 2005. Interindividual variability in response to sodium dichromate-induced oxidative DNA damage: role of the Ser 326 Cys polymorphism in the DNA-repair protein of 8-oxo-7,8-dihydro-2'-deoxyguanosine DNA glycosylase 1. Cancer Epidemiol. Biomarkers Prev. 14, 497–505.

    Article  CAS  PubMed  Google Scholar 

  17. Xia L., O’Connor T.R. 2001. DNA glycosylase activity assay based on streptavidin paramagnetic bead substrate capture. Anal. Biochem. 298, 322–326.

    Article  CAS  PubMed  Google Scholar 

  18. Liu B., Yang X., Wang K., Tan W., Li H., Tang H. 2007. Real-time monitoring of uracil removal by uracil-DNA glycosylase using fluorescent resonance energy transfer probes. Anal. Biochem. 366, 237–243.

    Article  CAS  PubMed  Google Scholar 

  19. Wang X., Hou T., Lu T., Li F. 2014. Autonomous exonuclease iii-assisted isothermal cycling signal amplification: a facile and highly sensitive fluorescence DNA glycosylase activity assay. Anal. Chem. 86, 9626–9631.

    Article  CAS  PubMed  Google Scholar 

  20. Chen C., Zhou D., Tang H., Liang M., Jiang J. 2013. A sensitive, homogeneous fluorescence assay for detection of thymine DNA glycosylase activity based on exonuclease-mediated amplification. Chem. Commun. 49, 5874.

    Article  CAS  Google Scholar 

  21. Cao X., Sun Y., LuP., Zhao M. 2020. Fluorescence imaging of intracellular nucleases—a review. Anal. Chim. Acta. 1137, 225–237.

    Article  CAS  PubMed  Google Scholar 

  22. Mirbahai L., Kershaw R.M., Green R.M., Hayden R.E., Meldrum R.A., Hodges N.J. 2010. Use of a molecular beacon to track the activity of base excision repair protein OGG1 in live cells. DNA Repair (Amst.). 9, 144–152.

    Article  CAS  PubMed  Google Scholar 

  23. Belhadj S., Rentsch A., Schwede F., Paquet-Durand F. 2021. Fluorescent detection of PARP activity in unfixed tissue. PLoS One. 16, 1–13.

    Article  Google Scholar 

  24. Torchinsky D., Michaeli Y., Gassman N.R., Ebenstein Y. 2019. Simultaneous detection of multiple DNA damage types by multi-colour fluorescent labelling. Chem. Commun. 55, 11414–11417.

    Article  CAS  Google Scholar 

  25. Hu J., Liu M.-H., Li Y., Tang B., Zhang C.-Y. 2018. Simultaneous sensitive detection of multiple DNA glycosylases from lung cancer cells at the single-molecule level. Chem. Sci. 9, 712–720.

    Article  CAS  PubMed  Google Scholar 

  26. Maksimenko A., Ishchenko A.A., Sanz G., Laval J., Elder R.H., Saparbaev M.K. 2004. A molecular beacon assay for measuring base excision repair activities. Biochem. Biophys. Res. Commun. 319, 240–246.

    Article  CAS  PubMed  Google Scholar 

  27. Pearl L.H., Schierz A.C., Ward S.E., Al-Lazikani B., Pearl F.M.G. 2015. Therapeutic opportunities within the DNA damage response. Nat. Rev. Cancer. 15, 166–180.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y., Li C.-C., Zhang X., Xu,Q., Zhang C.-Y. 2020. Development of oxidation damage base-based fluorescent probe for direct detection of DNA methylation. Anal. Chem. 92, 10223–10227.

    Article  CAS  PubMed  Google Scholar 

  29. Liu G., He W., Liu C. 2019. Sensitive detection of uracil-DNA glycosylase (UDG) activity based on terminal deoxynucleotidyl transferase-assisted formation of fluorescent copper nanoclusters (CuNCs). Talanta. 195, 320–326.

    Article  CAS  PubMed  Google Scholar 

  30. Suggitt M., Fearnley J., Swaine D., Volpato M., Phillips R., Bibby M., Loadman P., Anderson D., Anderson D. 2003. Comet assay and flow cytometry analysis of DNA repair in normal and cancer cells treated with known mutagens with different mechanisms of action. Teratog. Carcinog. Mutagen. 2, 13–29.

    Article  Google Scholar 

  31. Fasman G.D. 1975. Handbook of Biochemistry and Molecular Biology. 3rd ed. Cleveland: CRC.

    Google Scholar 

  32. Miroshnikova A.D., Kuznetsova A.A., Kuznetsov N.A., Fedorova O.S. 2016. Thermodynamics of damaged DNA binding and catalysis by human AP endonuclease 1. Acta Naturae. 8, 103–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kuznetsova A.A., Fedorova O.S., Kuznetsov N.A. 2018. Kinetic features of 3'–5' exonuclease activity of human AP-endonuclease APE1. Molecules. 23, 2101.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kuznetsova A.A., Kuznetsov N.A., Ishchenko A.A., Saparbaev M.K., Fedorova O.S. 2014. Step-by-step mechanism of DNA damage recognition by human 8‑oxoguanine DNA glycosylase. Biochim. Biophys. Act-a. 1840, 387–395.

    Article  CAS  Google Scholar 

  35. Kuznetsov N.A., Koval V.V., Fedorova O.S. 2011. Mechanism of recognition and repair of damaged DNA by human 8-oxoguanine DNA glycosylase hOGG1. Biochemistry (Moscow). 76, 118–130.

    CAS  PubMed  Google Scholar 

  36. Kuznetsova A.A., Iakovlev D.A., Misovets I.V., Ishchenko A.A., Saparbaev M.K., Kuznetsov N.A., Fedorova O.S. 2017. Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1. Mol. Biosyst. 13, 2638–2649.

    Article  CAS  PubMed  Google Scholar 

  37. Kuznetsov N.A., Kiryutin A.S., Kuznetsova A.A., Panov M.S., Barsukova M.O., Yurkovskaya A.V., Fedorova O.S. 2017. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase. J. Biomol. Struct. Dyn. 35, 950–967.

    Article  CAS  PubMed  Google Scholar 

  38. Kladova O.A., Grin I.R., Fedorova O.S., Kuznetsov N.A., Zharkov D.O. 2019. Conformational dynamics of damage processing by human DNA glycosylase NEIL1. J. Mol. Biol. 431, 1098–1112.

    Article  CAS  PubMed  Google Scholar 

  39. Kladova O.A., Iakovlev D.A., Groisman R., Ishchenko A.A., Saparbaev M.K., Fedorova O.S., Kuznetsov N.A. 2020. An assay for the activity of base excision repair enzymes in cellular extracts using fluorescent DNA probes. Biochemistry (Moscow). 8, 480‒489.

    Google Scholar 

  40. Kladova O.A., Alekseeva I.V., Saparbaev M., Fedorova O.S., Kuznetsov N.A. 2020. Modulation of the apurinic/apyrimidinic endonuclease activity of human APE1 and of its natural polymorphic variants by base excision repair proteins. Int. J. Mol. Sci. 21, 7174.

    Article  Google Scholar 

  41. Kladova O.A., Bazlekowa-Karaban M., Baconnais S., Piétrement O., Ishchenko A.A., Matkarimov B.T., Iakovlev D.A., Vasenko A., Fedorova O.S., Le Cam E. 2018. The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation. DNA Repair (Amst.). 64, 10–25.

    Article  CAS  PubMed  Google Scholar 

  42. Saparbaev M., Langouet S., Privezentzev C. V, Guengerich F.P., Cai H., Elder R.H., Laval J. 2002. 1,N(2)-ethenoguanine, a mutagenic DNA adduct, is a primary substrate of Escherichia coli mismatch-specific uracil-DNA glycosylase and human alkylpurine-DNA-N-glycosylase. J. Biol. Chem. 277, 26987–26993.

    Article  CAS  PubMed  Google Scholar 

  43. O’Brien P.J., Ellenberger T. 2004. Dissecting the broad substrate specificity of human 3-methyladenine-DNA glycosylase. J. Biol. Chem. 279, 9750–9757.

  44. Ringvoll J., Moen M.N., Nordstrand L.M., Meira L.B., Pang B., Bekkelund A., Dedon P.C., Bjelland S., Samson L.D., Falnes P.Ø. 2008. AlkB homologue 2-mediated repair of ethenoadenine lesions in mammalian DNA. Cancer Res. 68, 4142–4149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kuznetsov N.A., Kanazhevskaya L.Y., Fedorova O.S. 2021. DNA demethylation in the processes of repair and epigenetic regulation performed by 2-ketoglutarate-dependent DNA dioxygenases. Int. J. Mol. Sci. 22, 10540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 21-14-00018) and with partial support from the budget funding project no. 121031300041-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kuznetsov.

Ethics declarations

The authors declare no conflicts of interest. This article does not contain any studies involving humans or animals as research subjects.

Additional information

Abbreviations: OGG1, 8-oxoguanine DNA glycosylase; AAG, alkyl adenine DNA glycosylase; APE1, human AP endonuclease 1; MBD4, methylcytosine-binding domain 4; TDG, thymine DNA glycosylase; NEIL1, endonuclease VIII; AP site, apurine/apyrimidine site; F, (2R.3S)-2-(hydroxymethyl)-3-hydroxytetrahydrofuran residue; εА, 1,N6-ethenoadenosine; oxoG, 7,8-dihydro-8-oxoguanosine; FRET, Förster resonance energy transfer; Tg, thymidine glycol; FAM, 5(6)-carboxyfluorescein; BHQ1, black hole quencher; ps, thiophosphate group.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseeva, I.V., Kuznetsova, A.A., Kladova, O.A. et al. DNA Probes for Analysis of the Activity of Key Enzymes of the Base Excision DNA Repair Pathway in Human Cells. Mol Biol 57, 299–311 (2023). https://doi.org/10.1134/S0026893323020024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323020024

Keywords:

Navigation