Skip to main content
Log in

The Drosophila CG9890 Protein is Involved in the Regulation of Ecdysone-Dependent Transcription

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Previously we showed that the CG9890 protein, which has zinc finger domains, interacts with ENY2-containing complexes and is localized mainly on the promoters of active genes. The CG9890 protein is involved in the regulation of the expression of some of the genes on the promoters of which it is located, and among these genes there are genes for the ecdysone cascade. In this work, the role of the CG9890 protein in the regulation of ecdysone-dependent inducible transcription was studied. For this, 12 ecdysone-dependent genes on the promoters of which the CG9890 protein is localized were identified. Their activation was studied after the addition of 20-hydroxyecdysone to cells, both in normal conditions and after RNA interference of CG9890. The expression of ecdysone-dependent genes is significantly increased in response to the treatment of cells with ecdysone, in contrast to the control genes. Moreover, in the cell line after RNA interference CG9890, the transcription of 8 out of 12 genes was significantly higher than in the control line. Thus, the CG9890 protein is involved in the regulation of transcription of ecdysone-dependent genes, and, in most cases, acts as a repressor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Vorobyeva N.E., Mazina M.U., Golovnin A.K., Kopytova D.V., Gurskiy D.Y., Nabirochkina E.N., Georgieva S.G., Georgiev P.G., Krasnov A.N. 2013. Insulator protein Su(Hw) recruits SAGA and Brahma complexes and constitutes part of origin recognition complex-binding sites in the Drosophila genome. Nucleic Acids Res. 41, 5717‒5730.

    Article  CAS  Google Scholar 

  2. Mazina M.Yu., Vorobyeva N.E., Krasnov A.N. 2013. The ability of the Su(Hw) protein to create a platform for ORC binding does not depend on the type of surrounding chromatin. Cell Tissue Biol. 55, 362–368.

    Article  Google Scholar 

  3. Vorobyeva N.E., Nikolenko J.V., Krasnov A.N., Kuzmina J.L., Panov V.V., Nabirochkina E.N., Georgieva S.G., Shidlovskii Y.V. 2011. SAYP interacts with DHR3 nuclear receptor and participates in ecdysone-dependent transcription regulation. Cell Cycle. 10, 1821‒1827.

    Article  CAS  Google Scholar 

  4. Kopytova D.V., Krasnov A.N., Orlova A.V., Gurskiy D.Y., Nabirochkina E.N., Georgieva S.G., Shidlovskii Y.V. 2010. ENY2: couple, triple…more? Cell Cycle. 9, 479‒481.

    Article  CAS  Google Scholar 

  5. Kurshakova M., Maksimenko O., Golovnin A., Pulina M., Georgieva S., Georgiev P., Krasnov A. 2007. Evolutionarily conserved E(y)2/Sus1 protein is essential for the barrier activity of Su(Hw)-dependent insulators in Drosophila. Mol. Cell. 27, 332‒338.

    Article  CAS  Google Scholar 

  6. Krasnov A.N., Kurshakova M.M., Ramensky V.E., Mardanov P.V., Nabirochkina E.N., Georgieva S.G. 2005. A retrocopy of a gene can functionally displace the source gene in evolution. Nucleic Acids Res. 33, 6654‒6661.

    Article  CAS  Google Scholar 

  7. Kopytova D., Popova V., Kurshakova M., Shidlovskii Y., Nabirochkina E., Brechalov A., Georgiev G., Georgieva S. 2016. ORC interacts with THSC/TREX-2 and its subunits promote Nxf1 association with mRNP and mRNA export in Drosophila. Nucleic Acids Res. 44, 4920‒4933.

    Article  CAS  Google Scholar 

  8. Eaton M.L., Prinz J.A., MacAlpine H.K., Tretyakov G., Kharchenko P.V., MacAlpine D.M. 2011. Chromatin signatures of the Drosophila replication program. Genome Res. 21, 164‒174.

    Article  CAS  Google Scholar 

  9. Masai H., Matsumoto S., You Z., Yoshizawa-Sugata N., Oda M. 2010. Eukaryotic chromosome DNA replication: where, when, and how? Annu. Rev. Biochem. 79, 89‒130.

    Article  CAS  Google Scholar 

  10. MacAlpine H.K., Gordan R., Powell S.K., Hartemink A.J., MacAlpine D.M. 2010. Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res. 20, 201‒211.

    Article  CAS  Google Scholar 

  11. Fursova N.A., Nikolenko Yu.V., Soshnikova N.V., Mazina M.Yu., Vorobyeva N.E., Krasnov A.N. 2018. Protein CG9890 with zinc finger domains is a new component of Drosophila ENY2-containing complexes. Acta Nat. 10 (4), 110‒114.

    Article  CAS  Google Scholar 

  12. Fursova N.A., Mazina M.Yu., Nikolenko Yu.V., Vorobьeva N.E., Krasnov A.N. 2020. Drosophila CG9890 protein containing zinc finger domains colocalizes with chromatin modification and remodeling complexes on gene promoters and is involved in transcription regulation. Acta Nat. 12 (4), 114‒119.

    Article  CAS  Google Scholar 

  13. Clemens J.C., Worby C.A., Simonson-Leff N., Muda M., Maehama T., Hemmings B.A., Dixon J.E. 2000. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci. U. S. A. 97, 6499‒6503.

    Article  CAS  Google Scholar 

  14. Mazina M.Y., Nikolenko J.V., Fursova N.A., Nedil’ko P.N., Krasnov A.N., Vorobyeva N.E. 2015. Early-late genes of the ecdysone cascade as models for transcriptional studies. Cell Cycle. 14, 3593‒3601.

    Article  CAS  Google Scholar 

  15. Razin S.V., Borunova V.V., Maksimenko O.G., Kantidze O.L. 2012. Cys2His2 zinc finger protein family: classification, functions, and major members. Biochemistry (Moscow). 77, 217–226.

    CAS  PubMed  Google Scholar 

  16. Cheng C., Alexander R., Min R., Leng J., Yip K.Y., Rozowsky J., Yan K.K., Dong X., Djebali S., Ruan Y., Davis C.A., Carninci P., Lassman T., Gingeras T.R., Guigo R., Birney E., Weng Z., Snyder M., Gerstein M. 2012. Understanding transcriptional regulation by integrative analysis of transcription factor binding data. Genome Res. 22, 1658‒1667.

    Article  CAS  Google Scholar 

  17. Jiang N., Emberly E., Cuvier O., Hart C.M. 2009. Genome-wide mapping of boundary element-associated factor (BEAF) binding sites in Drosophila melanogaster links BEAF to transcription. Mol. Cell. Biol. 29, 3556‒3568.

    Article  CAS  Google Scholar 

  18. Gilchrist D.A., Nechaev S., Lee C., Ghosh S.K., Collins J.B., Li L., Gilmour D.S., Adelman K. 2008. NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly. Genes Dev. 22, 1921‒1933.

    Article  CAS  Google Scholar 

  19. Mazina M.Y., Kovalenko E.V., Vorobyeva N.E. 2021. The negative elongation factor NELF promotes induced transcriptional response of Drosophila ecdysone-dependent genes. Sci. Rep. 11, 172.

    Article  CAS  Google Scholar 

  20. Brookes E., de Santiago I., Hebenstreit D., Morris K.J., Carroll T., Xie S.Q., Stock J.K., Heidemann M., Eick D., Nozaki N., Kimura H., Ragoussis J., Teichmann S.A., Pombo A. 2012. Polycomb associates genome-wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs. Cell Stem Cell. 10, 157‒170.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed using the equipment of the Central Collective Use Center of the IBG RAS.

Funding

The study was financed by the Russian Science Foundation (project no. 20-14-00269).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Krasnov.

Ethics declarations

The authors declare they have no conflicts of interest. In this work, humans and animals were not used as research objects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolenko, J.V., Fursova, N.A., Mazina, M.Y. et al. The Drosophila CG9890 Protein is Involved in the Regulation of Ecdysone-Dependent Transcription. Mol Biol 56, 517–522 (2022). https://doi.org/10.1134/S0026893322040082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893322040082

Keywords:

Navigation