Skip to main content
Log in

Progerin and Its Role in Accelerated and Natural Aging

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Well-known theories of aging suggest that a certain metabolic defect negatively affects vital activity of the cell, be it oxidative stress, the accumulation of lesions in DNA, the exhaustion of telomeres, or distorted epigenetic processes. The theory of aging considered in the review postulates that an accumulation of progerin on the inner side of the nuclear envelope underlies the above defects. Progerin is a defective precursor of the lamin A nuclear matrix protein in which the C-terminal cysteine, which is removed normally, is retained and modified with a hydrophobic oligoisoprene chain. Progerin molecules attach with their hydrophobic processes to the inner membrane of the nuclear envelope, pushing away the adjacent fibrils of the nuclear matrix and the chromatin periphery. This changes the morphology and shape of the nucleus and alters the properties of the nuclear envelope and pore complexes embedded in it. As progerin accumulates in the nucleus, structural distortions increase in the nucleus, further distorting the nuclear–cytoplasmic transport of macromolecules and leading to the above defects in cell metabolism. This leads to increasing cell death and aging of the body over time. This mechanism of aging has been identified in patients with Hutchinson–Gilford progeria syndrome (HGPS). Mass progerin production in HGPS is caused by the point mutation c.1824C→T in exon 11 of the LMNA gene, which codes for lamins A and C. The mutation stimulates nonstandard splicing of the primary transcript during the formation of the lamin A precursor mRNA, thus causing progerin production. Children with progeria who have received the mutation from one of their parents age rapidly and die before 15 years of age. Approaches to progeria treatment are aimed at preventing the formation of progerin or destroying the progerin that has already accumulated. In the latter case, a promising strategy is to use rapamycin or its analogs and other substances and techniques that activate autophagy to purify the cell from progerin. Although in much smaller amounts, progerin is found in progeria-free people and may therefore play a role in natural aging. A maximum age that a person can reach is possible to estimate by taking account of the role that progerin plays in telomere shortening. Encouraging preliminary results achieved in purifying cells from progerin provide a means to develop an optimal procedure for periodic purification of the human body from progerin in order to reduce the rate of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. The regularity is inapplicable to between-species comparisons. For example, mouse telomeres are initially twice as long as human telomeres, while the lifespan is many times shorter in mice. The shortening rate was identified as a parameter to be compared between species. The lower the telomere shortening rate, the longer is the lifespan [160, 180].

REFERENCES

  1. Mosevitskii M.I. 2018. Rasprostranennost’ zhizni i unikal’nost’ razuma (The Wide Spread of Life and Uniqueness of Mind). St. Petersburg: SpetsLit.

  2. van der Pol A., van Gilst W.H., Voors A.A., van der Meer P. 2019. Treating oxidative stress in heart failure: Past, present and future. Eur. J. Heart Fail. 21, 425–435. https://doi.org/10.1002/ejhf.1320

    Article  PubMed  Google Scholar 

  3. Proshkina E.N., Solov’eva I.A., Shaposhnikova M.V., Moskaleva A.A. 2020. Key molecular mechanisms of aging, biomarkers, and potential interventions. Mol. Biol. (Moscow). 54 (6), 777–811.

    Article  CAS  Google Scholar 

  4. Romano A.D., Serviddio G., de Matthaeis A., Bellanti F., Vendemiale G. 2010. Oxidative stress and aging. J. Nephrol. 23 (Suppl 15), S29–536.

    PubMed  Google Scholar 

  5. Skulachev V.P., Shilovsky G.A., Putyatina T.S., Popov N.A., Markov A.V., Skulachev M.V., Sadovnichii V.A. 2020. Perspectives of Homo sapiens lifespan extension: Focus on external or internal resources? Aging (Albany, NY). 12, 5566–5584. https://doi.org/10.18632/aging.102981

    Article  Google Scholar 

  6. Best B.P. 2009). Nuclear DNA damage as a direct cause of aging. Rejuvenation Res. 12, 199–208.https://doi.org/10.1089/rej.2009.0847

    Article  CAS  PubMed  Google Scholar 

  7. Olovnikov A.M. 1973. A theory of merginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J. Theor. Biol. 41, 181–190. https://doi.org/10.1016/0022-5193(73)90198-7

    Article  CAS  PubMed  Google Scholar 

  8. Mikhelson V.M., Gamaleya I.A. 2013. Telomeirc Theory of Aging: A Review. Saarbrücken: Palmarium Acad. Publ.

    Google Scholar 

  9. Snow C.J., Dar A., Dutta A., Kehlenbach R.H., Paschal B.M. 2013. Defective nuclear import of TPR in progeria reflects the ran sensitivity of large cargo transport. J. Cell Biol. 201, 541–557. https://doi.org/10.1083/jcb.201212117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fasci D., van Ingen H., Scheltema R.A., Heck A.J.R. 2018. Histone interaction landscapes visualized by crosslinking mass spectrometry in intact cell nuclei. Mol. Cell. Proteomics. 17, 2018–2033. https://doi.org/10.1074/mcp.RA118.000924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dworak N., Makosa D., Chatterjee M., Jividen K., Yang C.S., Snow C., Simke W.C., Johnson I.G., Kelley J.B., Paschal B.M. 2019. A nuclear lamina-chromatin-Ran GTPase axis modulates nuclear import and DNA damage signaling. Aging Cell. 18, e12851. https://doi.org/10.1111/acel

    Article  PubMed  Google Scholar 

  12. Güttler T., Görlich D. 2011. Ran-dependent nuclear export mediators: A structural perspective. EMBO J. 30, 3457–3474. https://doi.org/10.1038/emboj.2011.287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goldberg M.W., Huttenlauch I., Hutchison C.J., Stick R. 2008. Filaments made from A- and B-type lamins differ in structure and organization. J. Cell Sci. 121, 215–225. https://doi.org/10.1242/jcs.022020

    Article  CAS  PubMed  Google Scholar 

  14. Zbarsky I.B., Georgiev G.P. 1959. Cytological characteristics of protein and nucleoprotein fractions of cell nuclei. Biochim. Biophys. Acta. 32 (1), 301–302. https://doi.org/10.1016/0006-3002(59)90600-6

    Article  CAS  PubMed  Google Scholar 

  15. Georgiev G.P., Chentsov Yu.S.1963. On ultrastructure of the nucleus: Basic structural elements of cell nuclei and their nucleoprotein composition. Biofizika. 8, 50–57.

    CAS  PubMed  Google Scholar 

  16. Earnshaw W.C., Laemmli U.K. 1983. Architecture of metaphase chromosomes and chromosome scaffolds. J. Cell Biol. 96, 84–93. https://doi.org/10.1083/jcb.96.1.84

    Article  CAS  PubMed  Google Scholar 

  17. Smith H.C., Puvion E., Buchholtz L.A., Berezney R. 1984. Spatial distribution of DNA loop attachment and replicational sites in the nuclear matrix. J. Cell Biol. 99, 1794–1802. https://doi.org/10.1083/jcb.99.5.1794

    Article  CAS  PubMed  Google Scholar 

  18. Mortillaro M.J., Blencowe B.J., Wei X., Nakayasu H., Du L., Warren S.L., Sharp P.A., Berezney R. 1996. A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc. Natl. Acad. Sci. U. S. A. 93, 8253–8257. https://doi.org/10.1073/pnas.93.16.8253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wei X., Somanathan S., Samarabandu J., Berezney R. 1999. Thre0e-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles. J. Cell Biol. 146, 543–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Razin S.V., Iarovaia O.V., Y.S. Vassetzky Y.S. 2014. A requiem to the nuclear matrix: From a controversial concept to 3D organization of the nucleus. Chromosoma. 123, 217–224. https://doi.org/10.1007/s00412-014-0459-8

    Article  CAS  PubMed  Google Scholar 

  21. Valter S.N., Kachurin A.L., Popov Yu.V., Mosevitsky M.I. 1984. Observation of the intranuclear scaffold formed by a structured fibril network in thin liver sections. Dokl. Akad. Nauk SSSR. 279, 1249–1251.

    CAS  Google Scholar 

  22. Adolph K.W. 1980. Organization of chromosomes in HeLa cells: Isolation of histone-depleted nuclei and nuclear scaffolds. J. Cell Sci. 42, 291–304.

    Article  CAS  PubMed  Google Scholar 

  23. Fey E.G., Krochmalnic G., Penman S. 1986. The nonchromatin substructures of the nucleus: The ribonucleoprotein (RNP)-containing and RNP-depleted matrices analyzed by sequential fractionation and resinless section electron microscopy. J. Cell Biol. 102, 1654–1665. https://doi.org/10.1083/jcb.102.5.1654

    Article  CAS  PubMed  Google Scholar 

  24. Gerace L., Blobel G. 1980. The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell. 19 (1), 277–287. https://doi.org/10.1016/0092-8674(80)90409-2

    Article  CAS  PubMed  Google Scholar 

  25. Turgay Y., Eibauer M., Goldman A.E., Shimi T., Khayat M., Ben-Harush K., Dubrovsky-Gaupp A., Sapra K.T., Goldman R.D., Medalia O. 2017. The molecular architecture of lamins in somatic cells. Nature543, 261–264. https://doi.org/10.1038/nature21382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ahn J., Jo I., Kang S.M., Hong S., Kim S., Jeong S., Kim Y.H., Park B.J., Ha N.C. 2019). Structural basis for lamin assembly at the molecular level. Nat. Commun. 10 (1), 3757. https://doi.org/10.1038/s41467-019-11684-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin F., Worman H.J. 1993. Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J. Biol. Chem. 268, 16321–16326.

    Article  CAS  PubMed  Google Scholar 

  28. Stroud M.J., Banerjee I., Veevers J., Chen J. 2014. Linker of nucleoskeleton and cytoskeleton complex proteins in cardiac structure, function, and disease. Circ. Res. 114, 538–548. https://doi.org/10.1161/CIRCRESAHA.114.301236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stroud M.J. 2018. Linker of nucleoskeleton and cytoskeleton complex proteins in cardiomyopathy. Biophys. Rev. 10, 1033–1051. https://doi.org/10.1007/s12551-018-0431-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Worman H.J., Yuan J., Blobel G., Georgatos S.D. 1988. A lamin B receptor in the nuclear envelope. Proc. Natl. Acad. Sci. U. S. A. 85, 8531–8534. https://doi.org/10.1073/pnas.85.22.8531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith S., Blobel G. 1993. The first membrane spanning region of the lamin B receptor is efficient for sorting to the inner nuclear membrane. J. Cell Biol. 120, 631–637.

    Article  CAS  PubMed  Google Scholar 

  32. Olins A.L., Rhodes G., Welch D.B., Zwerger M., Olins D.E. 2010. Lamin B receptor: Multi-tasking at the nuclear envelope. Nucleus. 1, 53–70. https://doi.org/10.4161/nucl.1.1.10515

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liokatis S., Edlich C., Soupsana K., Giannios I., Panagiotidou P., Tripsianes K., Sattler M., Georgatos S.D., Politou A.S. 2012. Solution structure and molecular interactions of lamin B receptor tudor domain. J. Biol. Chem. 287, 1032–1042. https://doi.org/10.1074/jbc.M111.281303

    Article  CAS  PubMed  Google Scholar 

  34. Nikolakaki E., Mylonis I., Giannakouros T. 2017. Lamin B receptor: Interplay between structure, function and localization. Cells. 6, 28. https://doi.org/10.3390/cells6030028

    Article  CAS  PubMed Central  Google Scholar 

  35. Constantinescu D., Gray H.L., Sammak P.J., Schatten G.P., Csoka A.B. 2006. Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells. 24, 177–185. https://doi.org/10.1634/stemcells.2004-0159

    Article  CAS  PubMed  Google Scholar 

  36. Gruenbaum Y., Foisner R. 2015. Lamins: Nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation Annu. Rev. Biochem. 84, 131–164. https://doi.org/10.1146/annurev-biochem-060614-034115

    Article  CAS  PubMed  Google Scholar 

  37. Zhang H., Petrie M.V., He Y., Peace J.M., Chiolo I.E., Aparicio O.M. 2019. Dynamic relocalization of replication origins by Fkh1 requires execution of DDK function and Cdc45 loading at origins. eLife. 8, e45512. https://doi.org/10.7554/eLife.45512

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bermeo S., Vidal C., Zhou H., Duque G. 2015. Lamin A/C acts as an essential factor in mesenchymal stem cell differentiation through the regulation of the dynamics of the Wnt/β-catenin pathway. J. Cell Biochem. 116, 2344–2353.

    Article  CAS  PubMed  Google Scholar 

  39. Davidson K.C., Adams A.M., Goodson J.M., McDonald C.E., Potter J.C., Berndt J.D., Biechele T.L., Taylor R.J., Moon R.T. 2012. Wnt/β-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4. Proc. Natl. Acad. Sci. U. S. A. 109, 4485–4490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Duque G., Rivas D. 2006. Age-related changes in lamin A/C expression in the osteoarticular system: Laminopathies as a potential new aging mechanism. Mech. Ageing Dev. 127, 378–383. https://doi.org/10.1016/j.mad.2005.12.007

    Article  CAS  PubMed  Google Scholar 

  41. Forleo C., Carmosino M., Resta N., Rampazzo A., Valecce R., Sorrentino S., Iacoviello M., Pisani F., Procino G., Gerbino A., Scardapane A., Simone C., Calore M., Torretta S., Svelto M., Favale S. 2015. Clinical and functional characterization of a novel mutation in lamin A/C gene in a multigenerational family with arrhythmogenic cardiac laminopathy. PLoS One. 10 (4), e0121723. https://doi.org/10.1371/journal.pone.0121723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Crasto S., My I., Pasquale E.D. 2020. The broad spectrum of LMNA cardiac diseases: From olecular mechanisms to clinical phenotype. Front. Physiol. 11, 761. https://doi.org/10.3389/fphys.2020.00761

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pollex R.L., Hegele R.A. 2004. Hutchinson–Gilford progeria syndrome. Clin. Genet. 66, 375–381. https://doi.org/10.1111/j.1399-0004.2004.00315.x

    Article  CAS  PubMed  Google Scholar 

  44. Scaffidi P., Misteli T. 2006. Lamin A-dependent nuclear defects in human aging. Science. 312 (5776), 1059–1063. https://doi.org/10.1126/science.1127168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Merideth M.A., Gordon L.B., Clauss S., Sachdev V., Smith A.C., Perry M.B., Brewer C.C., Zalewski C., Kim H.J., Solomon B., Brooks B.P., Gerber L.H., Turner M.L., Domingo D.L., Hart T.C., Graf J., et al. 2008. Phenotype and course of Hutchinson–Gilford progeria syndrome. N. Engl. J. Med. 358, 592–604. https://doi.org/10.1056/NEJMoa0706898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Coutinho H.D.M., Falcão-Silva V.S., Gregório Fernandes Gonçalves G.F., da Nóbrega R.B. 2009. Molecular ageing in progeroid syndromes: Hutchinson–Gilford progeria syndrome as a model. Immun. Ageing. 20, 6–14. https://doi.org/10.1186/1742-4933-6-4

    Article  CAS  Google Scholar 

  47. Eriksson M., Brown W.T., Gordon L.B., Glynn M.W., Singer J., Scott L., Erdos M.R., Robbins C.M., Moses T.Y., Berglund P., Dutra A., Pak E., Durkin S., Csoka A.B., Boehnke M., et al. 2003. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature. 423 (6937), 293–298. https://doi.org/10.1038/nature01629

    Article  CAS  PubMed  Google Scholar 

  48. De Sandre-Giovannoli A., Bernard R., Cau P., Navarro C., Amiel J., Boccaccio I., Lyonnet S., Stewart C.L., Munnich A., Le Merrer M., Lévy N. 2003. Lamin A truncation in Hutchinson–Gilford progeria. Science. 300 (5628), 2055. https://doi.org/10.1126/science.1084125

    Article  CAS  PubMed  Google Scholar 

  49. Capell B.C., Erdos M.R., Madigan J.P., Fiordalisi J.J., Varga R., Conneely K.N., Gordon L.B., Der C.J., Cox A.D., Collins F.S. 2005. Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson–Gilford progeria syndrome. Proc. Natl. Acad. Sci. U. S. A. 102, 12879–12884. https://doi.org/10.1073/pnas.0506001102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Glynn M.W., Glover T.W. 2005. Incomplete processing of mutant lamin A in Hutchinson–Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Hum. Mol. Genet. 14, 2959–2969. https://doi.org/10.1093/hmg/ddi326

    Article  CAS  PubMed  Google Scholar 

  51. Cenni V., Capanni C., Mattioli E., Schena E., Squarzoni S., Bacalini M.G., Garagnani P., Salvioli S., Franceschi C., Lattanzi G. 2020. Lamin A involvement in ageing processes. Ageing Res. Rev. 62, 101073. https://doi.org/10.1016/j.arr.2020.101073

    Article  CAS  PubMed  Google Scholar 

  52. Chojnowski A., Ong P.F., Wong E.S., Lim J.S., Mutalif R.A., Navasankari R., Dutta B., Yang H., Liow Y.Y., Sze S.K., Boudier T., Wright G.D., Colman A., Burke B., Stewart C.L., Dreesen O. 2015. Progerin reduces LAP2α-telomere association in Hutchinson–Gilford progeria. eLife. 4, e07759. https://doi.org/10.7554/eLife.07759

    Article  PubMed Central  Google Scholar 

  53. Chojnowski A., Ong P.F., Wong E.S., Lim J.S., Mutalif R.A., Navasankari R., Dutta B., Yang H., Liow Y.Y., Sze S.K., Boudier T., Wright G.D, Colman A., Burke B., Stewart C.L., Dreesen O. 2020. Heterochromatin loss as a determinant of progerin-induced DNA damage in Hutchinson–Gilford progeria. Aging Cell. 19, e13108. https://doi.org/10.1111/acel.13108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Romero-Bueno R., de la Cruz Ruiz P., Artal-Sanz M., Askjaer P., Dobrzynska A. 2019. Nuclear organization in stress and aging. Cells. 8, 664. https://doi.org/10.3390/cells8070664

    Article  CAS  PubMed Central  Google Scholar 

  55. Martins F., Sousa J., Pereira C.D., da Cruz e Silva O.A.B., Rebelo S. 2020. Nuclear envelope dysfunction and its contribution to the aging process. Aging Cell. 19, e13143. https://doi.org/10.1111/acel.13143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Arii J., Maeda F., Maruzuru Y., Koyanagi N., Kato A., Mori Y., Kawaguchi Y. 2020. ESCRT-III controls nuclear envelope deformation induced by progerin. Sci. Rep. 10, 18877. https://doi.org/10.1038/s41598-020-75852-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kang S.M., Yoon M.H., Ahn J., Kim J.E., Kim S.Y., Kang S.Y., Joo J., Park S., Cho J.H., Woo T.G., Oh A.Y., Chung K.J., An S.Y., Hwang T.S., Lee S.Y., et al. 2021. Progerinin, an optimized progerin-lamin A binding inhibitor, ameliorates premature senescence phenotypes of Hutchinson–Gilford progeria syndrome. Commun. Biol. 4, 5. https://doi.org/10.1038/s42003-020-01540-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Goldman R.D., Shumaker D.K., Erdos M.R., Eriksson M., Goldman A.E., Gordon L.B., Gruenbaum Y., Khuon S., Mendez M., Varga R., Collins F.S. 2004. accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. Proc. Natl. Acad. Sci. U. S. A. 101, 8963–8968. https://doi.org/10.1073/pnas.0402943101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dahl K.N., Scaffidi P., Islam M.F., Yodh A.G., Wilson K.L., Misteli T. 2006. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome. Proc. Natl. Acad. Sci. U. S. A. 103, 10271–10276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cao K., Graziotto J.J., Blair C.D., Mazzulli J.R., Erdos M.R., Krainc D., Collins F.S. 2011. Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson–Gilford progeria syndrome. Cells. Sci. Transl. Med. 3, 89ra58. https://doi.org/10.1126/scitranslmed.3002346

    Article  CAS  PubMed  Google Scholar 

  61. Noda A., Mishima S., Hirai Y., Hamasaki K., Landes R.D., Mitani H., Haga K., Kiyono T., Nakamura N., Kodama Y. 2015. Progerin, the protein responsible for the Hutchinson–Gilford progeria syndrome, increases the unrepaired DNA damages following exposure to ionizing radiation. Genes Environ. 37, 13. https://doi.org/10.1186/s41021-015-0018-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Saxena S., Kumar S. 2020. pharmacotherapy to gene editing: Potential therapeutic approaches for Hutchinson–Gilford progeria syndrome. Geroscience. 42, 467–494. https://doi.org/10.1007/s11357-020-00167-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gabriel D., Roedl D., Gordon L.B., Djabali K. 2015. Sulforaphane enhances progerin clearance in Hutchinson–Gilford progeria fibroblasts. Aging Cell. 14, 78–91. https://doi.org/10.1111/acel.12300

    Article  CAS  PubMed  Google Scholar 

  64. Rivera-Torres J., Acín-Perez R., Cabezas-Sánchez P., Osorio F.G., Gonzalez-Gómez C., Megias D., Cámara C., López-Otín C., Enríquez J.A., Luque-García J.L., Andrés V. 2013. identification of mitochondrial dysfunction in Hutchinson–Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture. J. Proteomics. 91, 466–477.

    Article  CAS  PubMed  Google Scholar 

  65. Bidault G., Garcia M., Capeau J., Morichon R., Vigouroux C., Béréziat V. 2020. Progerin expression induces inflammation, oxidative stress and senescence in human coronary endothelial cells. Cells. 9 (5), 1201. https://doi.org/10.3390/cells9051201

    Article  CAS  PubMed Central  Google Scholar 

  66. Chen W.M., Chiang J.C., Lin Y.C., Lin Y.N., Chuang P.Y., Chang Y.C., Chen C.C., Wu K.Y., Hsieh J.C., Chen S.K., Huang W.P., Chen B.P.C., Lee H. 2020. Lysophosphatidic acid receptor LPA3 prevents oxidative stress and cellular senescence in Hutchinson–Gilford progeria syndrome. Aging Cell. 19, e13064. https://doi.org/10.1111/acel.13064

    Article  CAS  PubMed  Google Scholar 

  67. Mao X., Bharti P., Thaivalappil A., Cao K. 2020. peroxisomal abnormalities and catalase deficiency in Hutchinson–Gilford progeria syndrome. Aging (Albany, NY). 12, 5195–5208. https://doi.org/10.18632/aging.102941

    Article  CAS  Google Scholar 

  68. Bandaria J.N., Qin P., Berk V., Chu S., Yildiz A. 2016. Shelterin protects chromosome ends by compacting telomeric chromatin. Cell. 164, 735–746. https://doi.org/10.1016/j.cell.2016.01.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Prokocimer M., Barkan R., Gruenbaum Y. 2013. Hutchinson–Gilford progeria syndrome through the lens of transcription. Aging Cell. 12, 533–543. https://doi.org/10.1111/acel.12070

    Article  CAS  PubMed  Google Scholar 

  70. Arancio W., Pizzolanti G., Genovese S.I., Pitrone M., Giordano C. 2014. Epigenetic involvement in Hutchinson–Gilford progeria syndrome: A mini-review. Gerontology. 60, 197–203. https://doi.org/10.1159/000357206

    Article  CAS  PubMed  Google Scholar 

  71. Bär C., Blasco M.A. 2016). Telomeres and telomerase as therapeutic targets to prevent and treat age-related diseases. F1000Res. 5, F1000 Faculty Rev-89. https://doi.org/10.12688/f1000research.7020.1

  72. Gavia-García G., Rosado-Pérez J., Arista-Ugalde T.L., Aguiñiga-Sánchez I., Santiago-Osorio E., Mendoza-Núñez V.M. 2021. Telomere length and oxidative stress and its relation with metabolic syndrome components in the aging. Biology (Basel). 10 (4), 253. https://doi.org/10.3390/biology10040253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schoeftner S., Blasco M.A. 2008. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat. Cell. Bio. 10, 228–236. https://doi.org/10.1038/ncb1685

    Article  CAS  Google Scholar 

  74. Redon S., Reichenbach P., Lingner J. 2010. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res. 38, 5797–5806. https://doi.org/10.1093/nar/gkq296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jiang X., Wang L., Xie S., Chen Y., Song S., Lu Y., Lu D. 2020. Long noncoding RNA MEG3 blocks telomerase activity in human liver cancer stem cells epigenetically. Stem Cell Res. Ther. 11 (1), 518. https://doi.org/10.1186/s13287-020-02036-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pfeiffer V., Lingner J. 2012. TERRA promotes telomere shortening through exonuclease 1-mediated resection of chromosome ends. PLoS Genet. 8 (6), e1002747. https://doi.org/10.1371/journal.pgen.1002747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang S., Risques R.A., Martin G.M., Rabinovitch P.S., Oshima J. 2008. Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A. Exp. Cell. Res. 314 (1), 82–91. https://doi.org/10.1016/j.yexcr.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  78. Aguado J., Sola-Carvajal A., Cancila V., Revêchon G., Ong P.F., Jones-Weinert C.W., Wallén Arzt E., Lattanzi G., Dreesen O., Tripodo C., Rossiello F., Eriksson M., d’Adda di Fagagna F. 2019. Inhibition of DNA damage response at telomeres improves the detrimental phenotypes of Hutchinson–Gilford progeria syndrome. Nat. Commun. 10 (1), 4990. https://doi.org/10.1038/s41467-019-13018-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mallampalli M.P., Huyer G., Bendale P., Gelb M.H., Michaelis S. 2005. inhibiting farnesylation reverses the nuclear morphology defect in a HeLa cell model for Hutchinson–Gilford progeria syndrome. Proc. Natl. Acad. Sci. U. S. A. 102, 14416–14421. https://doi.org/10.1073/pnas.0503712102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Toth J.I., Yang S.H., Qiao X., Beigneux A.P., Gelb M.H., Moulson C.L., Miner J.H., Young S.G., Fong L.G. 2005. Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proc. Natl. Acad. Sci. U. S. A. 102, 12873–12878. https://doi.org/10.1073/pnas.0505767102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang S.H., Bergo M.O., Toth JI., Qiao X., Hu Y., Sandoval S., Meta M., Bendale P, Gelb M.H., Young S.G., Fong L.G. 2005. blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson–Gilford progeria syndrome mutation. Proc. Natl. Acad. Sci. U. S. A. 102, 10291–10296. https://doi.org/10.1073/pnas.0504641102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang S.H., Meta M., Qiao X., Frost D., Bauch J., Coffinier C., Majumdar S., Bergo M.O., Young S.G., Fong L.G. 2006. A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson–Gilford progeria syndrome mutation. J. Clin. Invest. 116, 2115–2121. https://doi.org/10.1172/JCI28968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fong L.G., Frost D., Meta M., Qiao X., Yang S.H., Coffinier C., Young S.G. 2006. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science. 311 (5767), 1621–1623. https://doi.org/10.1126/science.1124875

    Article  CAS  PubMed  Google Scholar 

  84. Wang Y., Panteleyev A.A., Owens D.M., Djabali K., Stewart C.L., Worman H.J. 2008. Epidermal expression of the truncated prelamin A causing Hutchinson–Gilford progeria syndrome: Effects on keratinocytes, hair and skin. Hum. Mol. Genet. 17, 2357–2369. https://doi.org/10.1093/hmg/ddn136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang Y., Ostlund C., Worman H.J. 2010. Blocking protein farnesylation improves nuclear shape abnormalities in keratinocytes of mice expressing the prelamin A variant in Hutchinson–Gilford progeria syndrome. Nucleus. 1, 432–439. https://doi.org/10.4161/nucl.1.5.12972

    Article  PubMed  PubMed Central  Google Scholar 

  86. Cubria M.B., Suarez S., Masoudi A., Oftadeh R, Kamalapathy P., DuBose A., Erdos M.R., Cabral W.A., Karim L., Collins F.S., Snyder B.D., Nazarian A. 2020. Evaluation of musculoskeletal phenotype of the G608G progeria mouse model with lonafarnib, pravastatin, and zoledronic acid as treatment groups Proc. Natl. Acad. Sci. U. S. A. 117, 12029–12040. https://doi.org/10.1073/pnas.1906713117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lai W.F., Wong W.T. 2020. Progress and trends in the development of therapies for Hutchinson–Gilford progeria syndrome. Aging Cell. 19 (7), e13175. https://doi.org/10.1111/acel.13175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dhillon S. 2021. Lonafarnib: First approval. Drugs. 81, 283–289. https://doi.org/10.1007/s40265-020-01464-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Blondel S., Egesipe A.L., Picardi P., Jaskowiak A.L., Notarnicola M., Ragot J., Tournois J., Le Corf A., Brinon B., Poydenot P., Georges P., Navarro C., Pitrez P.R., Ferreira L., Bollot G., et al. 2016. Drug screening on Hutchinson–Gilford progeria pluripotent stem cells reveals aminopyrimidines as new modulators of farnesylation. Cell. Death Dis. 7 (2), 2105. https://doi.org/10.1038/cddis.2015.374

    Article  CAS  Google Scholar 

  90. Gordon L.B., Shappell H., Massaro J., D’Agostino R.B. Sr., Brazier J., Campbell S.E., Kleinman M.E., Kieran M.W. 2018. association of lonafarnib treatment vs no treatment with mortality rate in patients with Hutchinson–Gilford progeria syndrome. JAMA. 319, 1687–1695. https://doi.org/10.1001/jama.2018.3264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Young S.G., Yang S.H., Davies B.S., Jung H.J., Fong L.G. 2013. Targeting protein prenylation in progeria. Sci. Transl. Med. 5 (171), 171ps3. https://doi.org/10.1126/scitranslmed.3005229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Scaffidi P., Misteli T. 2005). Reversal of the cellular phenotype in the premature aging disease Hutchinson–Gilford progeria syndrome. Nat. Med. 11, 440-445. https://doi.org/10.1038/nm1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Osorio F.G., Navarro C.L., Cadiñanos J., López-Mejía I.C., Quirós P.M., Bartoli C., Rivera J., Tazi J., Guzmán G., Varela I., Depetris D., de Carlos F., Cobo J., Andrés V., De Sandre-Giovannoli A., et al. 2011. Splicing-directed therapy in a new mouse model of human accelerated aging. Sci. Transl. Med. 3 (106), 106ra107. https://doi.org/10.1126/scitranslmed.3002847

    Article  CAS  PubMed  Google Scholar 

  94. Erdos M.R., Cabral W.A., Tavarez U.L., Cao K., Gvozdenovic-Jeremic J., Narisu N., Zerfas P.M., Crumley S., Boku Y., Hanson G., Mourich D.V., Kole R., Eckhaus M.A., Gordon L.B., Collins F.S. 2021. A targeted antisense therapeutic approach for Hutchinson–Gilford progeria syndrome. Nat. Med. 27, 536–545. https://doi.org/10.1038/s41591-021-01274-0

    Article  CAS  PubMed  Google Scholar 

  95. Puttaraju M., Jackson M., Klein S., Shilo A., Bennett C.F., Gordon L., Rigo F., Misteli T. 2021. Systematic screening identifies therapeutic antisense oligonucleotides for Hutchinson–Gilford progeria syndrome. Nat. Med. 27, 526–535. https://doi.org/10.1038/s41591-021-01262-4

    Article  CAS  PubMed  Google Scholar 

  96. Revêchon G., Whisenant D., Eriksson M. 2021. Splice-inhibition therapy targets progeria. Nat. Med. 27, 377–379. https://doi.org/10.1038/s41591-021-01267-z

    Article  CAS  PubMed  Google Scholar 

  97. Pellegrini C., Columbaro M., Capanni C., D’Apice M.R., Cavallo C., Murdocca M., Lattanzi G., Squarzoni S. 2015. All-trans retinoic acid and rapamycin normalize Hutchinson–Gilford progeria fibroblast phenotype. Oncotarget. 6, 2914–2928. https://doi.org/10.18632/oncotarget.4939

    Article  Google Scholar 

  98. Kreienkamp R., Croke M., Neumann M.A., Bedia-Diaz G., Graziano S., Dusso A., Dorsett D., Carlberg C., Gonzalo S. 2016. Vitamin D receptor signaling improves Hutchinson–Gilford progeria syndrome cellular phenotypes. Oncotarget. 7 (21), 30018–30031. https://doi.org/10.18632/oncotarget.9065

    Article  PubMed  PubMed Central  Google Scholar 

  99. Beyret E., Liao H.K., Yamamoto M., Hernandez-Benitez R., Fu Y., Erikson G., Reddy P., Izpisua Belmonte J. 2019. Single-dose CRISPR-Cas9 therapy extends lifespan of mice with Hutchinson–Gilford progeria syndrome. Nat. Med. 25, 419–422. https://doi.org/10.1038/s41591-019-0343-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Piekarowicz K., Machowska M.,Volha Dzianisava V., Rzepecki R. 2019. Hutchinson–Gilford progeria syndrome-current status and prospects for gene therapy treatment. Cells. 8 (2), 88. https://doi.org/10.3390/cells8020088

    Article  CAS  PubMed Central  Google Scholar 

  101. Santiago-Fernández O., Osorio F.G., Quesada V., Rodríguez F., Basso S., Maeso D., Rolas L, Barkaway A., Nourshargh S., Folgueras A.R., Freije J.M.P., López-Otín C. 2019. Development of a CRISPR/Cas9-based therapy for Hutchinson–Gilford progeria syndrome. Nat. Med. 25, 423–426. https://doi.org/10.1038/s41591-018-0338-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Marraffini L.A., Sontheimer E.J. 2010. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet. 11, 181–190. https://doi.org/10.1038/nrg2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wiedenheft B. 2013). In defense of phage: Viral suppressors of CRISPR-mediated adaptive immunity in bacteria. RNA Biol. 10, 886–890. https://doi.org/10.4161/rna.23591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wu S.-S., Li Q.-C., Yin C.-Q., Xue W., Song C.-Q. 2020. Advances in CRISPR/Cas-based gene therapy in human genetic diseases. Theranostics. 10, 4374–4382. https://doi.org/10.7150/thno.43360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Koblan L.W., Erdos M.R., Wilson C., Cabral W.A., Levy J.M., Xiong Z.M., Tavarez U.L., Davison L.M., Gete Y.G., Mao X., Newby G.A., Doherty S.P., Narisu N., Sheng Q., Krilow C., et al. 2021. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature. 589 (7843), 608–614. https://doi.org/10.1038/s41586-020-03086-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gaudelli N.M., Komor A.C., Rees H.A., Packer M.S., Badran A.H., Bryson D.I., Liu D.R. 2017. Programmable base editing of A-T to G-C in genomic DNA without DNA cleavage. Nature. 551 (7681), 464–471. https://doi.org/10.1038/nature24644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Graziotto J.J., Cao K., Collins F.S., Krainc D. 2012. Rapamycin activates autophagy in Hutchinson–Gilford progeria syndrome: Implications for normal aging and age-dependent neurodegenerative disorders. Autophagy. 8, 147–151. https://doi.org/10.4161/auto.8.1.18331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ehninger D., Neff F, Xie K. 2014. Longevity, aging and rapamycin. Cell. Mol. Life Sci. 71, 4325–4346. https://doi.org/10.1007/s00018-014-1677-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mendelsohn A.R., Larrick J.W. 2011. Rapamycin as an antiaging therapeutic?: Targeting mammalian target of rapamycin to treat Hutchinson–Gilford progeria and neurodegenerative diseases. Rejuvenation Res. 14, 437–441. https://doi.org/10.1089/rej.2011.1238

    Article  CAS  PubMed  Google Scholar 

  110. Ramos F.J., Chen S.C., Garelick M.G, Dai D.F., Liao C.Y., Schreiber K.H., MacKay V.L., An E.H., Strong R., Ladiges W.C., Rabinovitch P.S., Kaeberlein M., Kennedy B.K. 2012. Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci. Transl. Med. 4 (144), 144ra103. https://doi.org/10.1126/scitranslmed.3003802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang H., Rudge D.G., Koos J.D., Vaidialingam B., Yang H.J., Pavletich N.P. 2013. mTOR kinase structure, mechanism and regulation. Nature. 497, 217–223. https://doi.org/10.1038/nature12122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Clements C.S., Bikkul M.U., Ofosu W., Eskiw C., Tree D., Makarov E., Kill I.R., Bridger J.M. 2019. Presence and distribution of progerin in HGPS cells is ameliorated by drugs that impact on the mevalonate and mTOR pathways. Biogerontology. 20, 337–358. https://doi.org/10.1007/s10522-019-09807-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Papadopoli D., Boulay K., Kazak L., Pollak M., Mallette F.A., Topisirovic I., Hulea L. 2019. mTOR as a central regulator of lifespan and aging. F1000Res. 8, F1000 Faculty Rev-998. https://doi.org/10.12688/f1000research.17196.1

  114. Saxton R.A., Sabatini D.M. 2017. mTOR signaling in growth, metabolism, and disease. Cell. 169, 361–371.

    Article  CAS  PubMed  Google Scholar 

  115. Huang J.U., Klionsky D.J. 2007. Autophagy and human disease. Cell Cycle. 6, 1837–1849. https://doi.org/10.4161/cc.6.15.4511

    Article  CAS  PubMed  Google Scholar 

  116. Kim Y.Ch., Guan K.-L. 2015. mTOR: A pharmacologic target for autophagy regulation. J. Clin. Invest. 125, 25–32. https://doi.org/10.1172/JCI73939

    Article  PubMed  PubMed Central  Google Scholar 

  117. Sotthibundhu A. 2016. Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells. Stem Cell Res. Ther. 7, 166. https://doi.org/10.1186/s13287-016-0425-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Almendáriz-Palacios C., Gillespie Z.E., Janzen M., Martinez V., Bridger J.M., Harkness T.A.A., Mousseau D.D., Eskiw C.H. 2020. The nuclear lamina: Protein accumulation and disease. Biomedicines. 8 (7), 188. https://doi.org/10.3390/biomedicines8070188

    Article  CAS  PubMed Central  Google Scholar 

  119. Saegusa C., Hosoya M., Nishiyama T., Saeki T., Fujimoto C., Okano H., Fujioka M., Ogawa K. 2020. Low-dose rapamycin-induced autophagy in cochlear outer sulcus cells. Laryngoscope Investig. Otolaryngol. 5, 520–528. https://doi.org/10.1002/lio2.392

    Article  PubMed  PubMed Central  Google Scholar 

  120. Mizushima N., Levine B.N. 2020. Autophagy in human diseases. N. Engl. J. Med. 383 (16), 1564–1576. https://doi.org/10.1056/NEJMra2022774

    Article  CAS  PubMed  Google Scholar 

  121. Lu X., Djabali K. 2018. Autophagic removal of farnesylated carboxy-terminal lamin peptides. Cells. 7 (4), 33. https://doi.org/10.3390/cells7040033

    Article  CAS  PubMed Central  Google Scholar 

  122. Cenni V., Capanni C., Columbaro M., Ortolani M., D’Apice M.R., Novelli G., Fini M., Marmiroli S., Scarano E., Maraldi N.M., Squarzoni S., Prencipe S., Lattanzi G. 2011. Autophagic degradation of farnesylated prelamin A as a therapeutic approach to lamin-linked progeria. Eur. J. Histochem. 55 (4), e36. https://doi.org/10.4081/ejh.2011.e36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Strong R., Miller R.A., Bogue M., Fernandez E., Javors M.A., Libert S., Marinez P.A., Murphy M.P., Musi N., Nelson J.F., Petrascheck M., Reifsnyder P., Richardson A., Salmon A.B., Macchiarini F., Harrison D.E. 2020. Rapamycin-mediated mouse lifespan extension: Late-life dosage regimes with sex-specific effects. Aging Cell. 19 (11), e13269.https://doi.org/10.1111/acel.13269

  124. Zhang Y., Zhang J., Wang S. 2021. The role of rapamycin in healthspan extension via the delay of organ aging. Ageing Res Rev. 70, 101376. https://doi.org/10.1016/j.arr.2021.101376

    Article  CAS  PubMed  Google Scholar 

  125. Garay R.P. 2021. Investigational drugs and nutrients for human longevity. Recent clinical trials registered in ClinicalTrials.gov and clinicaltrialsregister.eu. Expert Opin. Investig. Drugs. 30, 749–758. https://doi.org/10.1080/13543784.2021.1939306

    Article  CAS  PubMed  Google Scholar 

  126. Peters J.M., Franke W.W., Kleinschmidt J.A. 1994. Distinct 19S and 20S subcomplexes of the 26S proteasome and their distribution in the nucleus and the cytoplasm. J. Biol. Chem. 269, 7709–7718.

    Article  CAS  PubMed  Google Scholar 

  127. Sorokin A.V., Kim E.R., Ovchinnikov L.P. 2009. The proteasome system of protein degradation and processing. Usp. Biol. Khim. 49, 3–76.

    Google Scholar 

  128. Harhouri K., Navarro C., Depetris D., Mattei M.G., Nissan X., Cau P., De Sandre-Giovannoli A., Lévy N. 2017. MG132-induced progerin clearance is mediated by autophagy activation and splicing regulation. EMBO Mol. Med. 9, 1294–1313. https://doi.org/10.15252/emmm.201607315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Harhouri K., Frankel D., Bartoli C., Roll P., De Sandre-Giovannoli A., Lévy N. 2018. An overview of treatment strategies for Hutchinson–Gilford progeria syndrome. Ucleus. 9, 246–257. https://doi.org/10.1080/19491034.2018.1460045

    Article  CAS  Google Scholar 

  130. McClintock D., Ratner D., Lokuge M., Owens D.M., Gordon L.B., Collins F.S., Djabali K. 2007. The mutant form of lamin A that causes Hutchinson–Gilford progeria is a biomarker of cellular aging in human skin. PLoS One. 2, e1269. https://doi.org/10.1371/journal.pone.0001269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rodriguez S., Coppedè F., Sagelius H., Eriksson M. 2009. Increased expression of the Hutchinson–Gilford progeria syndrome truncated lamin a transcript during cell aging. Eur. J. Hum. Genet. 17, 928–937. https://doi.org/10.1038/ejhg.2008.270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ashapkin V.V., Kutueva L.I., Kurchashova S.Y., Kireev I.I. 2019. Are there common mechanisms between the Hutchinson–Gilford progeria syndrome and natural aging? Front. Genet. 10, 455. https://doi.org/10.3389/fgene.2019.00455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kreienkamp R., Gonzalo S. 2020. Metabolic dysfunction in Hutchinson–Gilford progeria syndrome. Cells. 9, 395. https://doi.org/10.3390/cells9020395

    Article  CAS  PubMed Central  Google Scholar 

  134. Osorio F.G., Varela I., Lara E., Puente X.S., Espada J., Santoro R., Freije J.M., Fraga M.F., López-Otín C. 2010. Nuclear envelope alterations generate an aging-like epigenetic pattern in mice deficient in Zmpste24 metalloprotease. Aging Cell. 9, 947–957. https://doi.org/10.1111/j.1474-9726.2010.00621.x

    Article  CAS  PubMed  Google Scholar 

  135. Worman H.J., Michaelis S. 2018. Permanently farnesylated prelamin A, progeria, and atherosclerosis. Circulation. 138, 283–286. https://doi.org/10.1161/CIRCULATIONAHA.118.034480

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kawakami Y., Hambright W.S., Takayama K., Mu X., Lu A., Cummins J.H., Matsumoto T., Yurube T., Kuroda R., Kurosaka M., Fu F.H., Robbins P.D., Niedernhofer L.J., Huard J. 2019. Rapamycin rescues age-related changes in muscle-derived stem/progenitor cells from progeroid mice. Mol. Ther. Methods Clin. Dev. 14, 64–76. https://doi.org/10.1016/j.omtm.2019.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Harrison D.E., Strong R., Sharp Z.D., Nelson J.F., Astle C.M., Flurkey K., Nadon N.L., Wilkinson J.E., Frenkel K., Carter C.S., Pahor M., Javors M.A., Fernandez E., Miller R.A. 2009. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 460 (7253), 392–395. https://doi.org/10.1038/nature08221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Stacchiotti A., Corsetti G. 2020. Natural compounds and autophagy: Allies against neurodegeneration. Front Cell Dev. Biol. 8, 555409. https://doi.org/10.3389/fcell.2020.555409

    Article  PubMed  PubMed Central  Google Scholar 

  139. Yessenkyzy A., Saliev T., Zhanaliyeva M., Masoud A.R., Umbayev B., Sergazy S., Krivykh E., Gulyayev A., Nurgozhin T. 2020. Polyphenols as caloric-restriction mimetics and autophagy inducers in aging research. Nutrients. 12 (5), 1344. https://doi.org/10.3390/nu12051344

    Article  CAS  PubMed Central  Google Scholar 

  140. García-Aguilar A., Palomino O., Benito M., Guillén C. 2021. Dietary polyphenols in metabolic and neurodegenerative diseases: Molecular targets in autophagy and biological effects. Antioxidants (Basel). 10 (2), 142.https://doi.org/10.3390/antiox10020142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Maduro A.T., Luís C., Soares R. 2021. Ageing, cellular senescence and the impact of diet: An overview. Porto. Biomed. J. 6 (1), e120. https://doi.org/10.1097/j.pbj.0000000000000120

    Article  Google Scholar 

  142. Pietrocola F., Lachkar S., Enot D.P., Niso-Santano M., Bravo-San Pedro J.M., Sica V., Izzo V., Maiuri M.C., Madeo F., Mariño G., Kroemer G. 2015. Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death Differ. 2, 509–516. https://doi.org/10.1038/cdd.2014.215

    Article  CAS  Google Scholar 

  143. Eisenberg T., Abdellatif M., Schroeder S., Primessnig U., Stekovic S., Pendl T., Harger A., Schipke J., Zimmermann A., Schmidt A., Tong M., Ruckenstuhl C., Dammbrueck C., Gross A.S., Herbst V., et al. 2016. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 22, 1428–1438. https://doi.org/10.1038/nm.4222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Finley J. 2018. Cellular stress and AMPK activation as a common mechanism of action linking the effects of metformin and diverse compounds that alleviate accelerated aging defects in Hutchinson–Gilford progeria syndrome. Med. Hypotheses. 118, 151–162. https://doi.org/10.1016/j.mehy.2018.06.029

    Article  CAS  PubMed  Google Scholar 

  145. Mariño G., Pietrocola F., Madeo F., Kroemer G. 2014. Caloric restriction mimetics: Natural/physiological pharmacological autophagy inducers. Autophagy. 10, 1879–1882. https://doi.org/10.4161/auto.36413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Escobar K.A., Cole N.H., Mermier C.M., VanDusseldorp A.T. 2019. Autophagy and aging: Maintaining the proteome through exercise and caloric restriction. Aging Cell. 18, e12876. https://doi.org/10.1111/acel.12876

    Article  CAS  PubMed  Google Scholar 

  147. Martin-Rincon M., Morales-Alamo D., Calbet J.A.L. 2018. Exercise-mediated modulation of autophagy in skeletal muscle. Scand. J. Med. Sci. Sports. 28, 772–781. https://doi.org/10.1111/sms.12945

    Article  CAS  PubMed  Google Scholar 

  148. Park S.S., Seo Y.K., Kwon K.-S. (2019. Sarcopenia targeting with autophagy mechanism by exercise. BMB Rep. 52, 64–69. https://doi.org/10.5483/BMBRep.2019.52.1.292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Babygirija R., Lamming D.W. (2021. The regulation of healthspan and lifespan by dietary amino acids. Transl. Med. Aging. 5, 17–30. https://doi.org/10.1016/j.tma.2021.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  150. Kim J.S., Choi H.W., Choi S., Do J.T. 2011. Reprogrammed pluripotent stem cells from somatic cells. Int. J. Stem Cells. 4 (1), 1–8. https://doi.org/10.15283/ijsc.2011.4.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  151. Jung H.-J, Tu Y., Yang S.H., Tatar A., Nobumori C., Wu D., Young S.G., Fong L.G. 2014. New LMNA knock-in mice provide a molecular mechanism for the ‘segmental aging’ in Hutchinson–Gilford progeria syndrome. Hum. Mol. Genet. 23, 1506–1515.

    Article  CAS  PubMed  Google Scholar 

  152. Nissan X., Blondel S., Navarro C., Maury Y., Denis C., Girard M., Martinat C., De Sandre-Giovannoli A., Levy N., Peschanski M. 2012. Unique preservation of neural cells in Hutchinson–Gilford progeria syndrome is due to the expression of the neural-specific miR-9 microRNA. Cell Rep. 2, 1–9. https://doi.org/10.1016/j.celrep.2012.05.015

    Article  CAS  PubMed  Google Scholar 

  153. Baek J.H., Schmidt E., Viceconte N., Strandgren C., Pernold K., Richard T.J., Van Leeuwen F.W., Dantuma N.P., Damberg P., Hultenby K., Ulfhake B., Mugnaini E., Rozell B., Eriksson M. 2015. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior. Hum. Mol. Genet. 24, 1305–1321. https://doi.org/10.1093/hmg/ddu541

    Article  CAS  PubMed  Google Scholar 

  154. Jung H.-J., Coffinier C., Choe Y., Beigneux A.P., Davies B.S., Yang S.H., Barnes R.H. 2nd, Hong J., Sun T., Pleasure S.J., Young S.G., Fong L.G. 2012. Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proc. Natl. Acad. Sci. U. S. A. 109, E423–E431. https://doi.org/10.1073/pnas.1111780109

    Article  PubMed  PubMed Central  Google Scholar 

  155. Schlachetzki J.C.M., Toda T., Mertens J. 2020. When function follows form: Nuclear compartment structure and the epigenetic landscape of the aging neuron. Exp. Gerontol. 133, 110876. https://doi.org/10.1016/j.exger.2020.110876

    Article  PubMed  PubMed Central  Google Scholar 

  156. Yang S.H., Procaccia S., Jung H.J., Nobumori C., Tatar A., Tu Y., Bayguinov Y.R., Hwang S.J., Tran D., Ward S.M., Fong L.G., Young S.G. 2015. Mice that express farnesylated versions of prelamin a in neurons develop achalasia. Hum. Mol. Genet. 24, 2826–2840. https://doi.org/10.1093/hmg/ddv043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Dong X., Milholland B., Vijg J. 2016. Evidence for a limit to human lifespan. Nature. 538, 257–259. https://doi.org/10.1038/nature19793

    Article  CAS  PubMed  Google Scholar 

  158. Steenstrup T., Kark J.D., Verhulst S., Thinggaard M., Hjelmborg J.V.B., Dalgård C., Kyvik K.O., Christiansen L., Mangino M., Spector T.D., Petersen I., Kimura M., Benetos A., Labat C., Sinnreich R., et al. 2017. Telomeres and the natural lifespan limit in humans. Aging (Albany, NY). 9, 1130–1142.https://doi.org/10.18632/aging.101216

    Article  Google Scholar 

  159. Tricola G.M., Simons M.J.P., Atema E., Boughton R.K., Brown J.L., Dearborn D.C., Divoky G., Eimes J.A., Huntington C.E., Kitaysky A.S., Juola F.A., Lank D.B., Litwa H.P., Mulder E.G.A., Nisbet I.C.T., et al. 2018. The rate of telomere loss is related to maximum lifespan in birds. Philos. Trans. R. Soc. Lond. B. 373 (1741), 20160445. https://doi.org/10.1098/rstb.2016.0445

    Article  Google Scholar 

  160. Cawthon R.M., Smith K.R., O’Brien E., Sivatchenko A., Kerber R.A. 2003. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 361, 393–395. https://doi.org/10.1016/S0140-6736(03)12384-7

    Article  CAS  PubMed  Google Scholar 

  161. Aubert G., Lansdorp P.M. 2008. Telomeres and aging. Physiol. Rev. 88, 557–579. https://doi.org/10.1152/physrev.00026.2007

    Article  CAS  PubMed  Google Scholar 

  162. Celtikci. B., Erkmen G.K., Dikmen Z.G. 2020. Regulation and effect of telomerase and telomeric length in stem cells. Curr. Stem Cell Res. Ther. 16, 809–823. https://doi.org/10.2174/1574888X15666200422104423

    Article  Google Scholar 

  163. Ros M., Carrascosa J.M. 2020. Current nutritional and pharmacological anti-aging interventions. Biochim. Biophys. ActaMol. Basis Dis. 1866 (3), 165612. https://doi.org/10.1016/j.bbadis.2019.165612

  164. Vaiserman A, Krasnienkov D. 2021. Telomere length as a marker of biological age: State-of-the-art. Front. Genet. Open Issues. Future Perspectives. 21, 630186. https://doi.org/10.3389/fgene.2020.630186

    Article  CAS  Google Scholar 

  165. Muñoz-Lorente M.A., Cano-Martin A.C., Blasco M.A. 2019. Mice with hyper-long telomeres show less metabolic aging and longer lifespans. Nat. Commun. 10 (1), 4723. https://doi.org/10.1038/s41467-019-12664-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Froy H., Underwood S.L., Dorrens J., Seeker L.A., Watt K., Wilbourn R.V., Pilkington J.G., Harrington L., Pemberton J.M., Nussey D.H. 2021. Heritable variation in telomere length predicts mortality in Soay sheep. Proc. Natl. Acad. Sci. U. S. A. 118, e2020563118. https://doi.org/10.1073/pnas.2020563118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wilkinson J.E., Burmeister L., Brooks S.V., Chan C.C., Friedline S., Harrison D.E., Hejtmancik J.F., Nadon N., Strong R., Wood L.K., Woodward M.A., Miller R.A. 2012. Rapamycin slows aging in mice. Aging Cell. 11, 675–682. https://doi.org/10.1111/j.1474-9726.2012.00832.x

    Article  CAS  PubMed  Google Scholar 

  168. Li Y.R., Li S., Lin C.C. 2018. Effect of resveratrol and pterostilbene on aging and longevity. Biofactors. 44, 69–82. https://doi.org/10.1002/biof.1400

    Article  CAS  PubMed  Google Scholar 

  169. Weichhart T. 2018. mTOR as regulator of lifespan, aging, and cellular senescence: A mini-review. Gerontology. 64, 127–134. https://doi.org/10.1159/000484629

    Article  CAS  PubMed  Google Scholar 

  170. Blagosklonny M.V. 2019. Rapamycin for longevity: Opinion article. Aging (Albany, NY). 11, 8048–8067. https://doi.org/10.18632/aging.102355

    Article  CAS  Google Scholar 

  171. Glossmann H.H., Lutz O.M.D. 2019. Metformin and aging. Gerontology. 65, 581–590. https://doi.org/10.1159/000502257

    Article  CAS  PubMed  Google Scholar 

  172. Bjedov I., Rallis C. 2020. The target of rapamycin signalling pathway in ageing and lifespan regulation. Genes (Basel). 11, 1043. https://doi.org/10.3390/genes11091043

    Article  CAS  PubMed Central  Google Scholar 

  173. Bernardes de Jesus B., Vera E., Schneeberger K., Tejera A.M., Ayuso E, Bosch F., Blasco M.A. 2012. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol. Med. 4, 691–704. https://doi.org/10.1002/emmm.201200245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Boccardi V., Herbig U. 2012. Telomerase gene therapy: A novel approach to combat aging. EMBO Mol. Med. 4, 685–687. https://doi.org/10.1002/emmm.201200246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bernardes de Jesus B., Schneeberger K., Vera E., Tejera A., Harley C.B., Blasco M.A. 2011. The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell. 10, 604–621. https://doi.org/10.1111/j.1474-9726.2011.00700.x

    Article  CAS  PubMed  Google Scholar 

  176. Salvador L., Singaravelu G., Harley C.B., Flom P., Suram A., Raffaele J.M. 2016. A natural product telomerase activator lengthens telomeres in humans: A randomized, double blind, and placebo controlled study. Rejuvenation Res. 19, 478–484. https://doi.org/10.1089/rej.2015.1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Tsoukalas D., Fragkiadaki P., Docea A.O., Alegakis A.K., Sarandi E., Thanasoula M., Spandidos D.A., Tsatsakis A., Razgonova M.P., Calina D. 2019. Discovery of potent telomerase activators: Unfolding new therapeutic and anti-aging perspectives. Mol. Med. Rep. 20, 3701–3708. https://doi.org/10.3892/mmr.2019.10614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Prieto-Oliveira P. 2021. Telomerase activation in the treatment of aging or degenerative diseases: A systematic review. Mol. Cell. Biochem. 476 (2), 599–607. https://doi.org/10.1007/s11010-020-03929-x

    Article  CAS  PubMed  Google Scholar 

  179. Whittemore K., Vera E., Martínez-Nevado E., Sanpera C., Blasco MA. 2019. Telomere shortening rate predicts species life span. Proc. Natl. Acad. Sci. U. S. A., 116, 15122–15127. https://doi.org/10.1073/pnas.1902452116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Fernandez M.L., Thomas M.S., Lemos B.S., DiMarco D.M., Missimer A., Melough M., Chun O.K., Murillo A.G., Alyousef H.M., Medina-Vera I. 2018. TA-65, a telomerase activator improves cardiovascular markers in patients with metabolic syndrome. Curr. Pharm. Des. 24, 1905–1911. https://doi.org/10.2174/1381612824666180316114832

    Article  CAS  PubMed  Google Scholar 

  181. Ait-Ghezala G., Hassan S., Tweed M., Paris D., Crynen G., Zakirova Z., Crynen S., Crawford F. 2016. Identification of telomerase-activating blends from naturally occurring compounds. Altern. Ther. Health Med. 22, 6–14. PMID: .27433836

    PubMed  Google Scholar 

  182. Berezutskii M.A., Durnova N.A., Vklasova Ya.A. 2019. Experimental and clinical studies on the mechanisms of anti-aging effects of chemical compounds from Astragalus membranaceus: A review. Usp Gerontol. 32, 702–710.

    Google Scholar 

  183. Sharma R., Martins N. 2020. Telomeres, DNA damage and ageing: Potential leads from ayurvedic rasayana (anti-ageing). drugs. J. Clin. Med. 9 (8), 2544. https://doi.org/10.3390/jcm9082544

    Article  CAS  PubMed Central  Google Scholar 

  184. Alshinnawy A.S., El-Sayed W.M., Taha A.M., Sayed A.A., Salem A.M. 2020. Astragalus membranaceus and Punica granatum alleviate infertility and kidney dysfunction induced by aging in male rats. Turk. J. Biol. 44, 166–175. https://doi.org/10.3906/biy-2001-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Bernardes de Jesus B., Blasco M.A. 2013. Telomerase at the intersection of cancer and aging. Trends Genet. 29, 513–520. https://doi.org/10.1016/j.tig.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  186. Yang F., Xiu M., Yang S., Li X., Tuo W., Su Y., He J., Liu Y. 2021. extension of drosophila lifespan by astragalus polysaccharide through a mechanism dependent on antioxidant and insulin/IGF-1 signaling. Evid. Based Complement. Alternat. Med. 2021, 6686748. https://doi.org/10.1155/2021/6686748.9999

  187. Shan H., Zheng X., Li M. 2019. The effects of astragalus membranaceus active extracts on autophagy-related diseases. Int. J. Mol. Sci. 20 (8), 1904. https://doi.org/10.3390/ijms20081904

    Article  CAS  PubMed Central  Google Scholar 

  188. Zhang X., Liang T., Yang W., Zhang L., Wu S., Yan C., Li Q. 2020. Astragalus membranaceus injection suppresses production of interleukin-6 by activating autophagy through the AMPK-mTOR pathway in lipopolysaccharide-stimulated macrophages. Oxid. Med. Cell. Longev. 2020, 1364147. https://doi.org/10.1155/2020/1364147

  189. Harley C.B., Liu W., Flom PL., Raffaele J.M. 2013. A natural product telomerase activator as part of a health maintenance program: Metabolic and cardiovascular response. Rejuvenation Res. 16, 386–395. https://doi.org/10.1089/rej.2013.1430

    Article  CAS  PubMed  Google Scholar 

  190. Liu P., Zhao H., Luo Y. 2017. Anti-aging implications of Astragalus membranaceus (Huangqi): A well-known chinese tonic. Aging Dis. 8, 868–886.https://doi.org/10.14336/AD.2017.0816

    Article  PubMed  PubMed Central  Google Scholar 

  191. Maier R., Bawamia B., Bennaceur K., Dunn S., Marsay L., Amoah R., Kasim A., Filby A., Austin D., Hancock H., Spyridopoulos I. 2020. Telomerase activation to reverse immunosenescence in elderly patients with acute coronary syndrome: Protocol for a randomized pilot trial. JMIR Res. Protoc. 9, e19456. https://doi.org/10.2196/19456

    Article  PubMed  PubMed Central  Google Scholar 

  192. Yegorov Y.E. 2020. Healthy aging: Antioxidants, uncouplers and/or telomerase? Mol. Biol. (Moscow). 54 (3), 311–316.

    Article  CAS  Google Scholar 

  193. Pignatti C., D’Adamo S., Stefanelli C., Flaigni F., Cetrullo S. 2020. Nutrients and pathways that regulate health span and life span. Geriatrics (Basel). 5 (4), 95. https://doi.org/10.3390/geriatrics5040095

    Article  PubMed Central  Google Scholar 

  194. Ukraintseva S., Arbeev K., Duan M., Akushevich I., Kulminski A., Stallard E., Yashin A. 2021. Decline in biological resilience as key manifestation of aging: Potential mechanisms and role in health and longevity. Mech. Ageing Dev. 194, 111418. https://doi.org/10.1016/j.mad.2020.111418

    Article  CAS  PubMed  Google Scholar 

  195. Yu M., Zhang H., Wang B., Zhang Y., Zheng X., Shao B., Zhuge Q., Jin K. 2021. Key signaling pathways in aging and potential interventions for healthy aging. Cells. 10 (3), 660. https://doi.org/10.3390/cells10030660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Gorbunova V., Seluanov A. 2009. Coevolution of telomerase activity and body mass in mammals: From mice to beavers. Mech. Ageing Dev. 130 (1–2), 3–9. https://doi.org/10.1016/j.mad.2008.02.008

    Article  CAS  PubMed  Google Scholar 

  197. Abegglen L.M., Caulin A.F., Chan A., Lee K., Robinson R., Campbell M.S., Kiso W.K., Schmitt D.L., Waddell P.J., Bhaskara S., Jensen S.T., Maley C.C., Schiffman J.D. 2015. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. J. Am. Med. Assoc. 314, 1850–1860. https://doi.org/10.1001/jama.2015.13134

    Article  CAS  Google Scholar 

  198. Ruby J.G., Smith M., Rochelle Buffenstein R. 2018. Naked mole-rat mortality rates defy gompertzian laws by not increasing with age. eLife. 7, e31157. https://doi.org/10.7554/eLife.31157

    Article  PubMed  PubMed Central  Google Scholar 

  199. Seluanov A., Gladyshev V.N., Vijg J., Gorbunova V. 2018. Mechanisms of cancer resistance in long-lived mammals. Nat. Rev. Cancer. 18 (7), 433–441. https://doi.org/10.1038/s41568-018-0004-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Takasugi M., Firsanov D., Tombline G., Ning H., Ablaeva J., Seluanov A., Gorbunova V. 2020. Naked mole-rat very-high-molecular-mass hyaluronan exhibits superior cytoprotective properties. Nat. Commun. 11, 2376. https://doi.org/10.1038/s41467-020-16050-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zhao S., Lin L., Kan G., Xu C., Tang Q., Yu C., Cui S. 2014). High autophagy in the naked mole rat may play a significant role in maintaining good health. Cell. Physiol. Biochem. 33 (2), 321–332. https://doi.org/10.1159/000356672

    Article  CAS  PubMed  Google Scholar 

  202. Brassard J.A. Fekete N., Garnier A., Hoesli C.A. 2016. Hutchinson–Gilford progeria syndrome as a model for vascular aging. Biogerontology. 17, 129–145. https://doi.org/10.1007/s10522-015-9602-z

    Article  CAS  PubMed  Google Scholar 

  203. Smith E.S.J., Park T.J., Holmes M.M., Buffenstein R. 2021. Some exciting future directions for work on naked mole-rats. Adv. Exp. Med. Biol. 1319, 409–420. https://doi.org/10.1007/978-3-030-65943-1_17

    Article  PubMed  Google Scholar 

  204. Macicior J., Marcos-Ramiro B., Ortega-Gutiérrez S. 2021. Small-molecule therapeutic perspectives for the treatment of progeria. Int. J. Mol Sci. 22 (13), 7190. https://doi.org/10.3390/ijms22137190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Cabral W.A., Tavarez U.L., Beeram I., Yeritsyan D., Boku Y.D., Eckhaus M.A., Nazarian A., Erdos M.R., Collins F.S. 2021. Genetic reduction of mTOR extends lifespan in a mouse model of Hutchinson–Gilford progeria syndrome. Aging Cell. 20 (9), e13457. https://doi.org/10.1111/acel.13457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kychygina A., Dall’Osto M., Allen J.A.M., Cadoret J.C., Piras V., Pickett H.A., Crabbe L. 2021. Progerin impairs 3D genome organization and induces fragile telomeres by limiting the dNTP pools. Sci. Rep. 11 (1), 13195. https://doi.org/10.1038/s41598-021-92631-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Coppedè F. 2021. Mutations involved in premature-ageing syndromes. Appl. Clin. Genet. 14, 279–295. https://doi.org/10.2147/TACG.S273525

    Article  PubMed  PubMed Central  Google Scholar 

  208. Yu M., Zhang H., Wang B., Zhang Y., Zheng X., Shao B., Zhuge Q., Jin K. 2021. Key signaling pathways in aging and potential interventions for healthy aging. Cells. 10 (3), 660. https://doi.org/10.3390/cells10030660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Cabral W.A., Tavarez U.L., Beeram I., Yeritsyan D., Boku Y.D., Eckhaus M.A., Nazarian A., Erdos M.R., Collins F.S. 2021. Genetic reduction of mTOR extends lifespan in a mouse model of Hutchinson–Gilford progeria syndrome. Aging Cell. 20 (9), e13457. https://doi.org/10.1111/acel.13457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Chen N.Y., Kim P.H., Fong L.G., Young S.G. 2020. Nuclear membrane ruptures, cell death, and tissue damage in the setting of nuclear lamin deficiencies. Progress and trends. Nucleus. 11, 237–249. https://doi.org/10.1080/19491034.2020.1815410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Dreesen O. 2020. Towards delineating the chain of events that cause premature senescence in the accelerated aging syndrome Hutchinson–Gilford progeria (HGPS). Biochem. Soc. Trans. 48, 981–991. https://doi.org/10.1042/BST20190882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to S.N. Pchelina for attention to the review and helpful comments, O.M. Gorbenko for help in manuscript preparation and illustrations, and F.V. Gorbenko for valuable information.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 14-04-00587-a, to M.I. Mosevitsky).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Mosevitsky.

Ethics declarations

Conflict of interests. The author declares that he has no conflict of interest.

This work does not contain any studies involving animals or human subjects performed by the author.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosevitsky, M.I. Progerin and Its Role in Accelerated and Natural Aging. Mol Biol 56, 125–146 (2022). https://doi.org/10.1134/S0026893322020091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893322020091

Keywords:

Navigation