Skip to main content
Log in

Role of the SWI/SNF Chromatin Remodeling Complex in Regulation of Inflammation Gene Expression

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The process of inflammation is the body’s natural defense response to the penetration of foreign substances and molecules from the outside. Many proteins, signaling cascades, and transcription factors are involved in the activation of inflammation genes. Their coordinated activity leads to a change in the expression of proinflammatory genes. The chromatin state of genes responding to the inflammation stimulus is the main factor determining the binding of transcriptional activators to the gene regulatory elements and a key mechanism in the induction of inflammatory genes. The rapid change in the state of chromatin, the creation of an open structure and the removal of the “nucleosome barrier” facilitates the binding of transcription factors and the initiation of transcription. This process is realized by attracting complexes to the gene that modify and remodel chromatin. One of the most important complexes restructuring the chromatin structure during gene activation is the SWI/SNF multisubunit complex. SWI/SNF regulates the expression of inflammation genes through interaction with transcription factors, including factors of the NF-κB signaling pathway. The variability of the subunits of this complex determines the specificity of its binding to the chromatin and various transcriptional activators. This review considers the role of SWI/SNF in the regulation of inflammation genes, describes its interactions with chromatin, and the molecular mechanisms of its recruitment to the promoters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Akira S., Uematsu S., Takeuchi O. 2006. Pathogen recognition and innate immunity. Cell. 124, 783–801.

    Article  CAS  PubMed  Google Scholar 

  2. Sen R., Baltimore D. 1986. Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell. 47, 921–928.

    Article  CAS  PubMed  Google Scholar 

  3. Ghosh S., May M.J., Kopp E.B. 1998. NF-κB and rel proteins: Evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260.

    Article  CAS  PubMed  Google Scholar 

  4. Hoffmann A., Baltimore D. 2006. Circuitry of nuclear factor κB signaling. Immunol. Rev. 210, 171–186.

    Article  PubMed  Google Scholar 

  5. Vallabhapurapu S., Karin M. 2009. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733.

    Article  CAS  PubMed  Google Scholar 

  6. Hayden M.S., Ghosh S. 2008. Shared principles in NF-κB signaling. Cell. 132, 344–362.

    Article  CAS  PubMed  Google Scholar 

  7. Fenouil R., Cauchy P., Koch F., Descostes N., Cabeza J.Z., Innocenti C., Ferrier P., Spicuglia S., Gut M., Gut I., Andrau J.C. 2012. CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters. Genome Res. 22, 2399–2408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clapier C.R., Iwasa J., Cairns B.R., Peterson C.L. 2017. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell. Biol. 18, 407–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hargreaves D.C., Crabtree G.R. 2011. ATP-dependent chromatin remodeling: Genetics, genomics and mechanisms. Cell Res. 21, 396–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mittal P., Roberts C.W.M. 2020. The SWI/SNF complex in cancer: Biology, biomarkers and therapy. Nat. Rev. Clin. Oncol. 17, 435–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han L., Madan V., Mayakonda A., Dakle P., Woon T.W., Shyamsunder P., Nordin H.B.M., Cao Z., Sundaresan J., Lei I., Wang Z., Koeffler H.P. 2019. Chromatin remodeling mediated by ARID1A is indispensable for normal hematopoiesis in mice. Leukemia. 33, 2291–2305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gao F., Elliott N.J., Ho J., Sharp A., Shokhirev M.N., Hargreaves D.C. 2019. Heterozygous mutations in SMARCA2 reprogram the enhancer landscape by global retargeting of SMARCA4. Mol. Cell. 75, 891–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. King H.W., Klose R.J. 2017. The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells. eLife. 6, e22631.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kelso T.W.R., Porter D.K., Amaral M.L., Shokhirev M.N., Benner C., Hargreaves D.C. 2017. Chromatin accessibility underlies synthetic lethality of SWI/SNF subunits in ARID1A-mutant cancers. eLife. 6, e30506.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Miller E.L., Hargreaves D.C., Kadoch C., Chang C.Y., Calarco J.P., Hodges C., Buenrostro J.D., Cui K., Greenleaf W.J., Zhao K., Crabtree G.R. 2017. TOP2 synergizes with BAF chromatin remodeling for both resolution and formation of facultative heterochromatin. Nat. Struct. Mol. Biol. 24, 344–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bao X., Rubin A.J., Qu K., Zhang J., Giresi P.G., Chang H.Y., Khavari P.A. 2015. A novel ATAC-seq approach reveals lineage-specific reinforcement of the open chromatin landscape via cooperation between BAF and p63. Genome Biol. 16, 1–17.

    Article  CAS  Google Scholar 

  17. Bossen C., Murre C.S., Chang A.N., Mansson R., Rodewald H.R., Murre C. 2015. The chromatin remodeler Brg1 activates enhancer repertoires to establish B cell identity and modulate cell growth. Nat. Immunol. 16, 775–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Euskirchen G., Auerbach R.K., Snyder M. 2012. SWI/SNF chromatin-remodeling factors: Multiscale analyses and diverse functions. J. Biol. Chem. 287, 30897–30905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kwon H., Imbalzano A.N., Khavari P.A., Kingston R.E., Green M.R. 1994. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature. 370, 477–481.

    Article  CAS  PubMed  Google Scholar 

  20. Clapier C.R., Cairns B.R. 2009. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304.

    Article  CAS  PubMed  Google Scholar 

  21. Wang W., Côté J., Xue Y., Zhou S., Khavari P.A., Biggar S.R., Muchardt C., Kalpana G.V., Goff S.P., Yaniv M., Workman J.L., Crabtree G.R. 1996. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 15, 5370–5382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lemon B., Inouye C., King D.S., Tjian R. 2001. Selectivity of chromatin-remodelling cofactors for ligand-activated transcription. Nature. 414, 924–928.

    Article  CAS  PubMed  Google Scholar 

  23. Raab J.R., Resnick S., Magnuson T. 2015. Genome-Wide transcriptional regulation mediated by biochemically distinct SWI/SNF complexes. PLoS Genet. 11, 1–26.

    Article  CAS  Google Scholar 

  24. Alpsoy A., Dykhuizen E.C. 2018. Glioma tumor suppressor candidate region gene 1 (GLTSCR1) and its paralog GLTSCR1-like form SWI/SNF chromatin remodeling subcomplexes. J. Biol. Chem. 293, 3892–3903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Michel B.C., D’Avino A.R., Cassel S.H., Mashtalir N., McKenzie Z.M., McBride M.J., Valencia A.M., Zhou Q., Bocker M., Soares L.M.M., Pan J., Remillard D.I., Lareau C.A., Zullow H.J., Fortoul N., et al. 2018. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat. Cell Biol. 20, 1410–1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang X., Wang S., Troisi E.C., Howard T.P., Haswell J.R., Wolf B.K., Hawk W.H., Ramos P., Oberlick E.M., Tzvetkov E.P., Ross A., Vazquez F., Hahn W.C., Park P.J., Roberts C. W.M. 2019. BRD9 defines a SWI/SNF sub-complex and constitutes a specific vulnerability in malignant rhabdoid tumors. Nat. Commun. 10, 1–11.

    CAS  Google Scholar 

  27. Brien G.L., Remillard D., Shi J., Hemming M.L., Chabon J., Wynne K., Dillon E.T., Cagney G., Van Mierlo G., Baltissen M.P., Vermeulen M., Qi J., Fröhling S., Gray N.S., Bradner J.E., Vakoc C.R., Armstrong S.A. 2018. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. eLife. 7, 1–26.

    Article  Google Scholar 

  28. Mashtalir N., D’Avino A.R., Michel B.C., Luo J., Pan J., Otto J.E., Zullow H.J., McKenzie Z.M., Kubiak R.L., St Pierre R., Valencia A.M., Poynter S.J., Cassel S.H., Ranish J.A., Kadoch C. 2018. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell. 175, 1272–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lessard J., Wu J.I., Ranish J., Wan M., Winslow M.M., Staahl B.T., Wu H., Aebersold R., Graef I.A., Crabtree G.R. 2007. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron. 55, 201–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ho L., Ronan J.L., Wu J., Staahl B.T., Chen L., Kuo A., Lessard J., Nesvizhskii A.I., Ranish J., Crabtree G.R. 2009. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc. Natl. Acad. Sci. U. S. A. 106, 5181–5186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Priam P., Krasteva V., Rousseau P., D’Angelo G., Gaboury L., Sauvageau G., Lessard J.A. 2017. SMARCD2 subunit of SWI/SNF chromatin-remodeling complexes mediates granulopoiesis through a CEBPϵ dependent mechanism. Nat. Genet. 49, 753–764.

    Article  CAS  PubMed  Google Scholar 

  32. Witzel M., Petersheim D., Fan Y., Bahrami E., Racek T., Rohlfs M., Puchałka J., Mertes C., Gagneur J., Ziegenhain C., Enard W., Stray-Pedersen A., Arkwright P.D., Abboud M.R., Pazhakh V., et al. 2017. Chromatin-remodeling factor SMARCD2 regulates transcriptional networks controlling differentiation of neutrophil granulocytes. Nat. Genet. 49, 742–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Forcales S.V., Albini S., Giordani L., Malecova B., Cignolo L., Chernov A., Coutinho P., Saccone V., Consalvi S., Williams R., Wang K., Wu Z., Baranovskaya S., Miller A., Dilworth F.J., Puri P.L. 2012. Signal-dependent incorporation of MyoD-BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex. EMBO J. 31, 301–316.

    Article  CAS  PubMed  Google Scholar 

  34. Lickert H., Takeuchi J.K., Von Both I., Walls J.R., McAuliffe F., Adamson S.L., Henkelman R.M., Wrana J.L., Rossant J., Bruneau B.G. 2004. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature. 432, 107–112.

    Article  CAS  PubMed  Google Scholar 

  35. Mashtalir N., Suzuki H., Farrell D.P., Sankar A., Luo J., Filipovski M., D’Avino A.R., St Pierre R., Valencia A.M., Onikubo T., Roeder R.G., Han Y., He Y., Ranish J.A., DiMaio F., et al. 2020. A structural model of the endogenous human BAF complex informs disease mechanisms. Cell. 183, 802–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Soshnikova N.V., Sheinov A.A., Tatarskii E.V., Georgieva S.G. 2020. DPF domain as a unique structura unit in transcription activation, differentiation, and malignant transformation. Acta Naturae. 12, 57–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao K., Wang W., Rando O.J., Xue Y., Swiderek K., Kuo A., Crabtree G.R. 1998. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell. 95, 625–636.

    Article  CAS  PubMed  Google Scholar 

  38. Weintraub H., Groudine M. 1976. Chromosomal subunits in active genes have an altered conformation. Science. 193, 848–856.

    Article  CAS  PubMed  Google Scholar 

  39. Wu C., Bingham P.M., Livak K.J., Holmgren R., Elgin S.C.R. 1979. The chromatin structure of specific genes: 1. Evidence for higher order domains of defined DNA sequence. Cell. 16, 797–806.

    Article  CAS  PubMed  Google Scholar 

  40. Luger K., Mäder A.W., Richmond R.K., Sargent D.F., Richmond T.J. 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 389, 251–260.

    Article  CAS  PubMed  Google Scholar 

  41. Rye R. 1995. Structure of the NF-kappa B p50 homodimer bound to DNA. Nature. 378, 603–605.

    Article  CAS  PubMed  Google Scholar 

  42. Wang V.Y. 2012. NF-κB regulation: Lessons from structures. Immunol. Rev. 246, 36–58.

    Article  CAS  PubMed  Google Scholar 

  43. Steger D.J., Workman J.L. 1997. Stable co-occupancy of transcription factors and histones at the HIV-1 enhancer. EMBO J. 16, 2463–2472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Angelov D., Lenouvel F., Hans F., Müller C.W., Bouvet P., Bednar J., Moudrianakis E.N., Cadet J., Dimitrov S. 2004. The histone octamer is invisible when NF-κB binds to the nucleosome. J. Biol. Chem. 279, 42374–42382.

    Article  CAS  PubMed  Google Scholar 

  45. Lone I.N., Shukla M.S., Charles Richard J.L., Peshev Z.Y., Dimitrov S., Angelov D. 2013. Binding of NF-κB to nucleosomes: Effect of translational positioning, nucleosome remodeling and linker histone H1. PLoS Genet. 9 (9), e1003830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saccani S., Pantano S., Natoli G. 2001. Two waves of nuclear factor κB recruitment to target promoters. J. Exp. Med. 193, 1351–1359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Plevy S.E., Gemberling J.H., Hsu S., Dorner A.J., Smale S.T. 1997. Multiple control elements mediate activation of the murine and human interleukin 12 p40 promoters: Evidence of functional synergy between C/EBP and Rel proteins. Mol. Cell. Biol. 17, 4572–4588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhu C., Gagnidze K., Gemberling J.H.M., Plevy S.E. 2001. Characterization of an activation protein-1-binding site in the murine interleukin-12 p40 promoter: Demonstration of novel functional elements by a reductionist approach. J. Biol. Chem. 276, 18519–18528.

    Article  CAS  PubMed  Google Scholar 

  49. Zhu C., Rao K., Xiong H., Gagnidze K., Li F., Horvath C., Plevy S. 2003. Activation of the murine interleukin-12 p40 promoter by functional interactions between NFAT and ICSBP. J. Biol. Chem. 278, 39372–39382.

    Article  CAS  PubMed  Google Scholar 

  50. Weinmann A.S., Plevy S.E., Smale S.T. 1999. Rapid and selective remodeling of a positioned nucleosome during the induction of IL-12 p40 transcription. Immunity. 11, 665–675.

    Article  CAS  PubMed  Google Scholar 

  51. Weinmann A.S., Mitchell D.M., Sanjabi S., Bradley M.N., Hoffmann A., Liou H.C., Smale S.T. 2001. Nucleosome remodeling at the IL-12 p40 promoter is a TLR-dependent, Rel-independent event. Nat. Immunol. 2, 51–57.

    Article  CAS  PubMed  Google Scholar 

  52. Zhou L., Nazarian A.A., Xu J., Tantin D., Corcoran L.M., Smale S.T. 2007. An inducible enhancer required for Il12b promoter activity in an insulated chromatin environment. Mol. Cell. Biol. 27, 2698–2712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramirez-Carrozzi V.R., Nazarian A.A., Li C.C., Gore S.L., Sridharan R., Imbalzano A.N., Smale S.T. 2006. Selective and antagonistic functions of SWI/SNF and Mi-2β nucleosome remodeling complexes during an inflammatory response. Genes Dev. 20, 282–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ramirez-Carrozzi V.R., Braas D., Bhatt D.M., Cheng C.S., Hong C., Doty K.R., Black J.C., Hoffmann A., Carey M., Smale S.T. 2009. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell. 138, 114–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barnes P.J. 2009. Targeting the epigenome in the treatment of asthma and chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 6, 693–696.

    Article  CAS  PubMed  Google Scholar 

  56. Ito K., Ito M., Elliott W.M., Cosio B., Caramori G., Kon O.M., Barczyk A., Hayashi S., Adcock I.M., Hogg J.C., Barnes P.J. 2005. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N. Engl. J. Med. 352, 1967–1976.

    Article  CAS  PubMed  Google Scholar 

  57. Yamamoto M., Yamazaki S., Uematsu S., Sato S., Hemmi H., Hoshino K., Kaisho T., Kuwata H., Takeuchi O., Takeshige K., Saitoh T., Yamaoka S., Yamamoto N., Yamamoto S., Muta T., Takeda K., Akira S. 2004. Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IκBζ. Nature. 430, 218–222.

    Article  CAS  PubMed  Google Scholar 

  58. Yamazaki S., Matsuo S., Muta T., Yamamoto M., Akira S., Takeshige K. 2008. Gene-specific requirement of a nuclear protein, IκB-ζ, for promoter association of inflammatory transcription regulators. J. Biol. Chem. 283, 32404–32411.

    Article  CAS  PubMed  Google Scholar 

  59. Tartey S., Matsushita K., Vandenbon A., Ori D., Imamura T., Mino T., Standley D.M., Hoffmann J.A., Reichhart J.M., Akira S., Takeuchi O. 2014. Akirin2 is critical for inducing inflammatory genes by bridging IκB-ζ and the SWI/SNF complex. EMBO J. 33, 2332–2348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bonnay F., Nguyen X., Cohen-Berros E., Troxler L., Batsche E., Camonis J., Takeuchi O., Reichhart J., Matt N. 2014. Akirin specifies NF-κB selectivity of Drosophila innate immune response via chromatin remodeling. EMBO J. 33, 2349–2362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tando T., Ishizaka A., Watanabe H., Ito T., Iida S., Haraguchi T., Mizutani T., Izumi T., Isobe T., Akiyama T., Inoue J., Iba H. 2010. Requiem protein links RelB/p52 and the Brm-type SWI/SNF complex in a noncanonical NF-κB pathway. J. Biol. Chem. 285, 21951–21960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bouwmeester T., Bauch A., Ruffner H., Angrand P.O., Bergamini G., Croughton K., Cruciat C., Eberhard D., Gagneur J., Ghidelli S., Hopf C., Huhse B., Mangano R., Michon A.M., Schirle M., et al. 2004. A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nat. Cell. Biol. 6, 97–105.

    Article  CAS  PubMed  Google Scholar 

  63. Ishizaka A., Mizutani T., Kobayashi K., Tando T., Sakurai K., Fujiwara T., Iba H. 2012. Double plant homeodomain (PHD) finger proteins DPF3a and -3b are required as transcriptional co-activators in SWI/SNF complex-dependent activation of NF-κB RelA/p50 heterodimer. J. Biol. Chem. 287, 11924–11933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hargreaves D.C., Horng T., Medzhitov R. 2009. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell. 138, 129–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bayarsaihan D. 2011. Epigenetic mechanisms in inflammation. J. Dent. Res. 90, 9–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhong H., Voll R.E., Ghosh S. 1998. Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell. 1, 661–671.

    Article  CAS  PubMed  Google Scholar 

  67. Zhong H., May M.J., Jimi E., Ghosh S. 2002. The phosphorylation status of nuclear NF-κB determines its association with CBP/p300 or HDAC-1. Mol. Cell. 9, 625–636.

    Article  CAS  PubMed  Google Scholar 

  68. Dong J., Jimi E., Zhong H., Hayden M.S., Ghosh S. 2008. Repression of gene expression by unphosphorylated NF-κB p65 through epigenetic mechanisms. Genes Dev. 22, 1159–1173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mukherjee S.P., Behar M., Birnbaum H.A., Hoffmann A., Wright P.E., Ghosh G. 2013. Analysis of the RelA:CBP/p300 interaction reveals its involvement in NF-κB-driven transcription. PLoS Biol. 11 (9), e1001647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Garbati M.R., Alço G., Gilmore T.D. 2010. Histone acetyltransferase p300 is a coactivator for transcription factor REL and is C-terminally truncated in the human diffuse large B-cell lymphoma cell line RC-K8. Cancer Lett. 291, 237–245.

    Article  CAS  PubMed  Google Scholar 

  71. Haery L., Lugo-Picó J.G., Henry R.A., Andrews A.J., Gilmore T.D. 2014. Histone acetyltransferase-deficient p300 mutants in diffuse large B cell lymphoma have altered transcriptional regulatory activities and are required for optimal cell growth. Mol. Cancer. 13, 1–13.

    Article  CAS  Google Scholar 

  72. Agalioti T., Lomvardas S., Parekh B., Yie J., Maniatis T., Thanos D. 2000. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter. Cell. 103, 667–678.

    Article  CAS  PubMed  Google Scholar 

  73. Lomvardas S., Thanos D. 2002. Modifying gene expression programs by altering core promoter chromatin architecture. Cell. 110, 261–271.

    Article  CAS  PubMed  Google Scholar 

  74. Thanos D., Maniatis T. 1995). Virus induction of human IFN-β gene expression requires the assembly of an enhanceosome. Cell. 83, 1091–1100.

    Article  CAS  PubMed  Google Scholar 

  75. Ford E., Thanos D. 2010. The transcriptional code of human IFN-β gene expression. Biochim. Biophys. Acta— Gene Regul. Mech. 1799, 328–336.

    Article  CAS  Google Scholar 

  76. Park J., Wood M.A., Cole M.D. 2002. BAF53 forms distinct nuclear complexes and functions as a critical c‑Myc-interacting nuclear cofactor for oncogenic transformation. Mol. Cell. Biol. 22, 1307–1316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Raisner R., Kharbanda S., Jin L., Jeng E., Chan E., Merchant M., Haverty P.M., Bainer R., Cheung T., Arnott D., Flynn E.M., Romero F.A., Magnuson S., Gascoigne K.E. 2018. Enhancer activity requires CBP/P300 bromodomain-dependent histone H3K27 Acetylation. Cell Rep. 24, 1722–1729.

    Article  CAS  PubMed  Google Scholar 

  78. Soutourina J. 2018. Transcription regulation by the Mediator complex. Nat. Rev. Mol. Cell Biol. 19, 262–274.

    Article  CAS  PubMed  Google Scholar 

  79. Malik S., Roeder R.G. 2005. Dynamic regulation of pol II transcription by the mammalian Mediator complex. Trends Biochem. Sci. 30, 256–263.

    Article  CAS  PubMed  Google Scholar 

  80. van Essen D., Engist B., Natoli G., Saccani S. 2009. Two modes of transcriptional activation at native promoters by NF-κB p65. PLoS Biol. 7, 0549–0562.

  81. Fukasawa R., Tsutsui T., Hirose Y., Tanaka A., Ohkuma Y. 2012. Mediator CDK subunits are platforms for interactions with various chromatin regulatory complexes. J. Biochem. Tokyo). 152, 241–249.

    Article  CAS  PubMed  Google Scholar 

  82. Cho H., Orphanides G., Sun X., Yang X.-J., Ogryzko V., Lees E., Nakatani Y., Reinberg D. 1998. A human RNA polymerase II complex containing factors that modify chromatin structure. Mol. Cell. Biol. 18, 5355–5563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yao R.W., Wang Y., Chen L.L. 2019. Cellular functions of long noncoding RNAs. Nat. Cell Biol. 21, 542–551.

    Article  CAS  PubMed  Google Scholar 

  84. Moran V.A., Perera R.J., Khalil A.M. 2012. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res. 40, 6391–6400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kawaguchi T., Tanigawa A., Naganuma T., Ohkawa Y., Souquere S., Pierron G., Hirose T., Steitz J.A. 2015. SWI/SNF chromatin-remodeling complexes function in noncoding RNA-dependent assembly of nuclear bodies. Proc. Natl. Acad. Sci. U. S. A. 112, 4304–4309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhu Y., Rowley M.J., Böhmdorfer G., Wierzbicki A.T. 2013. A SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing. Mol. Cell. 49, 298–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Peng X., Gralinski L, Armour C.D., Ferris M.T., Thomas M.J., Proll S., Bradel-Tretheway B.G., Korth M.J., Castle J.C., Biery M.C., Bouzek H.K., Haynor D.R., Frieman M.B., Heise M., Raymond C.K., et al. 2010. Unique signatures of long noncoding RNA expression in response to virus infection and altered innate immune signaling. mBio. 1, 206–210.

    Article  CAS  Google Scholar 

  88. Rapicavoli N.A., Qu K., Zhang J., Mikhail M., Laberge R.M., Chang H.Y. 2013. A mammalian pseudogene lncRNA at the interface of inflammation and antiinflammatory therapeutics. eLife. 2013, 1–16.

    Google Scholar 

  89. Carpenter S., Aiello D., Atianand M.K., Ricci E.P., Gandhi P., Hall L.L., Byron M., Monks B., Henry-Bezy M., Lawrence J.B., O’Neill L.A., Moore M.J., Caffrey D.R., Fitzgerald K.A. 2013. A long noncoding RNA mediates both activation and repression of immune response genes. Science. 341, 789–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hu G., Gong A.Y., Wang Y., Ma S., Chen X., Chen J., Su C.J., Shibata A., Strauss-Soukup J.K., Drescher K.M., Chen X.M. 2016. LincRNA-Cox2 promotes late inflammatory gene transcription in macrophages through modulating SWI/SNF-mediated chromatin remodeling. J. Immunol. 196, 2799–2808.

    Article  CAS  PubMed  Google Scholar 

  91. Tafessu A., Banaszynski L.A. 2020. Establishment and function of chromatin modification at enhancers: Chromatin landscape at enhancers. Open Biol. 10, 200255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Andersson R., Sandelin A. 2020. Determinants of enhancer and promoter activities of regulatory elements. Nat. Rev. Genet. 21, 71–87.

    Article  CAS  PubMed  Google Scholar 

  93. Weiterer S.S., Meier-Soelch J., Georgomanolis T., Mizi A., Beyerlein A., Weiser H., Brant L., Mayr-Buro C., Jurida L., Beuerlein K., Müller H., Weber A., Tenekeci U., Dittrich-Breiholz O., Bartkuhn M., et al. 2020. Distinct IL-1α-responsive enhancers promote acute and coordinated changes in chromatin topology in a hierarchical manner. EMBO J. 39, 1–22.

    Article  CAS  Google Scholar 

  94. Teferedegne B., Green M.R., Guo Z., Boss J.M. 2006. Mechanism of action of a distal NF-κB-dependent enhancer. Mol. Cell. Biol. 26, 5759–5770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gatchalian J., Malik S., Ho J., Lee D.S., Kelso T.W.R., Shokhirev M.N., Dixon J.R., Hargreaves D.C. 2018. A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nat. Commun. 9, 5139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pan J., McKenzie Z.M., D’Avino A.R., Mashtalir N., Lareau C.A., St. Pierre R., Wang L., Shilatifard A., Kadoch C. 2019. The ATPase module of mammalian SWI/SNF family complexes mediates subcomplex identity and catalytic activity–independent genomic targeting. Nat. Genet. 51, 618–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang X., Lee R.S., Alver B.H., Haswell J.R., Wang S., Mieczkowski J., Drier Y., Gillespie S.M., Archer T.C., Wu J.N., Tzvetkov E.P., Troisi E.C., Pomeroy S.L., Biegel J.A., Tolstorukov M.Y., Bernstein B.E., et al. 2017. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat. Genet. 49, 289–295.

    Article  CAS  PubMed  Google Scholar 

  98. Alexander J.M., Hota S.K., He D., Thomas S., Ho L., Pennacchio L.A., Bruneau B.G. 2015. Brg1 modulates enhancer activation in mesoderm lineage commitment. Development (Cambridge). 142 (8) 1418–1430.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mathur R., Alver B.H., San Roman A.K., Wilson B.G., Wang X., Agoston A.T., Park P.J., Shivdasani R.A., Roberts C.W.M. 2017. ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nat. Genet. 49, 296–302.

    Article  CAS  PubMed  Google Scholar 

  100. Nakayama R.T., Pulice J.L. Valencia A.M., McBride M.J., McKenzie Z.M., Gillespie M.A., Ku W.L., Teng M., Cui K., Williams R.T., Cassel S.H., Qing H., Widmer C.J., Demetri G.D., Irizarry R.A., et al. SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters. Nat. Genet. 49, 1613–1623.

  101. Alver B.H., Kim K.H., Lu P., Wang X., Manchester H.E., Wang W., Haswell J.R., Park P.J., Roberts C.W.M. 2017. The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers. Nat. Commun. 8, 1–10.

    Article  Google Scholar 

  102. Fujioka S., Niu J., Schmidt C., Sclabas G.M., Peng B., Uwagawa T., Li Z., Evans D.B., Abbruzzese J.L., Chiao P.J. 2004. NF-κB and AP-1 connection: Mechanism of NF-κB-dependent regulation of AP-1 activity. Mol. Cell. Biol. 24, 7806–7819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vierbuchen T., Ling E., Cowley C.J., Couch C.H., Wang X., Harmin D.A., Roberts C.W.M., Greenberg M.E. 2017. AP-1 transcription factors and the BAF complex mediate signal-dependent enhancer selection. Mol. Cell. 68, 1067–1082.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Heinz S., Benner C., Spann N., Bertolino E., Lin Y.C., Laslo P., Cheng J.X., Murre C., Singh H., Glass C.K. 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell. 38, 576–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mancino A., Termanini A., Barozzi I., Ghisletti S., Ostuni R., Prosperini E., Ozato K., Natoli G. 2015. A dual cis-regulatory code links IRF8 to constitutive and inducible gene expression in macrophages. Genes Dev. 29, 394–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fonseca G.J., Tao J., Westin E.M., Duttke S.H., Spann N.J., Strid T., Shen Z., Stender J.D., Sakai M., Link V.M., Benner C., Glass C.K. 2019. Diverse motif ensembles specify non-redundant DNA binding activities of AP-1 family members in macrophages. Nat. Commun. 10, 414–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ghisletti S., Barozzi I., Mietton F., Polletti S., De Santa F., Venturini E., Gregory L., Lonie L., Chew A., Wei C.L., Ragoussis J., Natoli G. 2010. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity. 32, 317–328.

    Article  CAS  PubMed  Google Scholar 

  108. Chandler R.L., Damrauer J.S., Raab J.R., Schisler J.C., Wilkerson M.D., Didion J.P., Starmer J., Serber D., Yee D., Xiong J., Darr D.B., Pardo-Manuel de Villena F., Kim W.Y., Magnuson T. 2015. Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat. Commun. 6, 1–14.

    Article  CAS  Google Scholar 

  109. Kim M., Lu F., Zhang Y. 2016. Loss of HDAC-mediated repression and gain of NF-κB activation underlie cytokine induction in ARID1A- and PIK3CA-mutation-driven ovarian cancer. Cell Rep. 17, 275–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ogawa S., Lozach J., Jepsen K., Sawka-Verhelle D., Perissi V., Sasik R., Rose D.W., Johnson R.S., Rosenfeld M.G., Glass C.K. 2004. A nuclear receptor corepressor transcriptional checkpoint controlling activator protein 1-dependent gene networks required for macrophage activation. Proc. Natl. Acad. Sci. U. S. A. 101, 14461–14466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Underhill C., Qutob M.S., Yee S.P., Torchia J. 2000. A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J. Biol. Chem. 275, 40463–40470.

    Article  CAS  PubMed  Google Scholar 

  112. Ong C.T., Corces V.G. 2014. CTCF: An architectural protein bridging genome topology and function. Nat. Rev. Genet. 15, 234–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cuartero S., Weiss F.D., Dharmalingam G., Guo Y., Ing-Simmons E., Masella S., Robles-Rebollo I., Xiao X., Wang Y.F., Barozzi I., Djeghloul D., Amano M.T., Niskanen H., Petretto E., Dowell R.D., et al. 2018. Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation. Nat. Immunol. 19, 932–941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lu C., Allis C.D. 2017. SWI/SNF complex in cancer. Nat. Genet. 49, 178–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kadoch C., Crabtree G.R. 2015. Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Sci. Adv. 1, 1–18.

    Article  CAS  Google Scholar 

  116. Wanior M., Krämer A., Knapp S., Joerger A.C. 2021. Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy. Oncogene. 40, 3637–3654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Furman D., Campisi J., Verdin E., Carrera-Bastos P., Targ S., Franceschi C., Ferrucci L., Gilroy D.W., Fasano A., Miller G.W., Miller A.H., Mantovani A., Weyand C.M., Barzilai N., Goronzy J.J., et al. 2019. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research (project no. 20-14-50525).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Feoktistov.

Ethics declarations

Conflict of interests. The authors declare they have no conflict of interest.

In this work, humans and animals were not used as objects of research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feoktistov, A.V., Georgieva, S.G. & Soshnikova, N.V. Role of the SWI/SNF Chromatin Remodeling Complex in Regulation of Inflammation Gene Expression. Mol Biol 56, 182–195 (2022). https://doi.org/10.1134/S0026893322020054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893322020054

Keywords:

Navigation