Skip to main content
Log in

Microarray for Quantitative Determination of Inflammatory Biomarkers in a Culture Medium

  • METHODS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Cytokines and acute phase proteins play an important role in the development of the immune response during inflammatory reactions. Depending on the type of disease, the development of inflammation is accompanied by changes in concentrations (both decrease and increase) of not one, but many inflammatory biomarkers. Here, a quantitative microarray-based method for multiplex immunoassay of eight biomarkers of human inflammation, namely acute phase proteins (C-reactive protein, serum amyloid protein A) and cytokines (IL-6, IL-8, IL-17, IL-18, IP10/CXCL10, TNFα) was developed and the possibility of its use for the detection of inflammatory biomarkers in a culture medium has been demonstrated. The developed method can be used to evaluate changes of the inflammatory biomarker profile induced by different agents or to determine the concentrations of biomarkers after activation of cells while studying different diseases with the help of in vitro models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Paquette S.G., Banner D., Zhao Z., Fang Y., Huang S.S.H., León A.J., Ng D.C.K., Almansa R., Martin-Loeches I., Ramirez P., Socias L., Loza A., Blanco J., Sansonetti P., Rello J., et al. 2012. Interleukin-6 is a potential biomarker for severe pandemic H1N1 influenza A infection. PLoS One. 7. e38214.https://doi.org/10.1371/journal.pone.0038214

  2. Gabay C. 2006. Interleukin-6 and chronic inflammation. Arthritis Res. Ther. 8, Suppl. 2(Suppl. 2):S3. https://doi.org/10.1186/ar1917

  3. Sommer A., Fabri M. 2015. Vitamin D regulates cytokine patterns secreted by dendritic cells to promote differentiation of IL-22-producing T cells. PLoS One. 10, e0130395. https://doi.org/10.1371/journal.pone.0130395

  4. De Simone V., Franzè E., Ronchetti G., Colantoni A., Fantini M.C., Di Fusco D., Sica G.S., Sileri P., MacDonald T.T., Pallone F., Monteleone G., Stolfi C. 2015. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene. 34, 3493–3503. https://doi.org/10.1038/onc.2014.286

    Article  CAS  PubMed  Google Scholar 

  5. Smith H.O., Stephens N.D., Qualls C.R., Fligelman T., Wang T., Lin C.-Y., Burton E., Griffith J.K., Pollard J.W. 2013. The clinical significance of inflammatory cytokines in primary cell culture in endometrial carcinoma. Mol. Oncol. 7, 41–54. https://doi.org/10.1016/j.molonc.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  6. Gonçales J.P., Nobrega C.G.O., Nascimento W.R.C., Lorena V.M.B., Peixoto D.M., Costa V.M.A., Barbosa C.S., Solé D., Sarinho E.S.C., Souza V.M.O. 2020. Cytokine production in allergic and Trichuris trichiura-infected children from an urban region of the Brazilian northeast. Parasitol. Int. 74, 101918. https://doi.org/10.1016/j.parint.2019.04.015

    Article  CAS  PubMed  Google Scholar 

  7. Elisia I., Nakamura H., Lam V., Hofs E., Cederberg R., Cait J., Hughes M.R., Lee L., Jia W., Adomat H.H., Guns E.S., McNagny K.M., Samudio I., Krystal G. 2016. DMSO represses inflammatory cytokine production from human blood cells and reduces autoimmune arthritis. PLoS One. 11, e0152538. https://doi.org/10.1371/journal.pone.0152538

  8. Monastero R.N., Pentyala S. 2017. Cytokines as biomarkers and their respective clinical cutoff levels. Int. J. Inflam. 2017, 4309485. https://doi.org/10.1155/2017/4309485

  9. Watanabe S., Ogura N., Akutsu M., Kawashima M., Hattori T., Yano T., Ito K., Kondoh T. 2017. Pro-inflammatory cytokine production in co-culture of human monocytes and synovial fibroblasts from the human temporomandibular joint. Int. J. Oral Med. Sci. 15, 107–113. https://doi.org/10.5466/ijoms.15.107

    Article  Google Scholar 

  10. Karlsen T.A., Brinchmann J.E. 2019. Expression of inflammatory cytokines in mesenchymal stromal cells is sensitive to culture conditions and simple cell manipulations. Exp. Cell Res. 374, 122–127. https://doi.org/10.1016/j.yexcr.2018.11.014

    Article  CAS  PubMed  Google Scholar 

  11. Prunet C., Montange T., Véjux A., Laubriet A., Rohmer J.F., Riedinger J.M., Athias A., Lemaire-Ewing S., Néel D., Petit J.M., Steinmetz E., Brenot R., Gambert P., Lizard G. 2006. Multiplexed flow cytometric analyses of pro- and anti-inflammatory cytokines in the culture media of oxysterol-treated human monocytic cells and in the sera of atherosclerotic patients. Cytometry A. 69 (5), 359–373. https://doi.org/10.1002/cyto.a.20272

    Article  CAS  PubMed  Google Scholar 

  12. Manfè V., Fleckner J., Nørby Lisby P., Zhang B., Dai H.J., Keller P. 2015. Cytokine detection and simultaneous assessment of rheumatoid factor interference in human serum and synovial fluid using high-sensitivity protein arrays on plasmonic gold chips. BMC Biotechnol. 15, 73. https://doi.org/10.1186/s12896-015-0186-0

    Article  CAS  Google Scholar 

  13. Song J., Merbs S.L., Sokoll L.J., Chan D.W., Zhang Z. 2019. A multiplex immunoassay of serum biomarkers for the detection of uveal melanoma. Clin. Proteomics. 16, 10. https://doi.org/10.1186/s12014-019-9230-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Manglani M., Rua R., Hendricksen A., Braunschweig D., Gao Q., Tan W., Houser B., McGavern D.B., Oh K. 2019. Method to quantify cytokines and chemokines in mouse brain tissue using Bio-Plex multiplex immunoassays. Methods. 158, 22–26. https://doi.org/10.1016/j.ymeth.2019.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Porsch-Özcürümez M., Kischel N., Priebe H., Splettstösser W., Finke E.J., Grunow R. 2004. Comparison of enzyme-linked immunosorbent assay, Western blotting, microagglutination, indirect immunofluorescence assay, and flow cytometry for serological diagnosis of tularemia. Clin. Diagn. Lab. Immunol. 11, 1008–1015. https://doi.org/10.1128/CDLI.11.6.1008-1015.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gryadunov D.A., Shaskol’skii B.L., Nasedkina T.V., Rubina A.Yu., Zasedatelev A.S. 2018. Hydrogel biochip technology by the IMB RAS: 30 years after. Acta Naturae. 10, 4–18. https://doi.org/10.32607/20758251-2018-10-4-4-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rubina A.Y., Filippova M.A., Feizkhanova G.U., Shepeliakovskaya A.O., Sidina E.I., Boziev K.M., Laman A.G., Brovko F.A., Vertiev Y.V., Zaseda-telev A.S., Grishin E.V. 2010. Simultaneous detection of seven staphylococcal enterotoxins: Development of hydrogel biochips for analytical and practical application. Anal. Chem. 82, 8881–8889. https://doi.org/10.1021/ac1016634

    Article  CAS  PubMed  Google Scholar 

  18. Butvilovskaya V.I., Tsybul’skaya M.V., Tikhonov A.A., Talibov V.O., Belousov P.V., Sazykin A.Yu., Shvarts A.M., Putlyaeva L.V., Surzhikov S.A., Stomakhin A.A., So-lopova O.N., Rubina A.Yu. 2015. Preparation of recombinant serpins B3 and B4 and Investigation of their specific interactions with antibodies using hydrogel-based microarrays. Mol. Biol. (Moscow). 49 (5), 705–7139.

    Article  CAS  Google Scholar 

  19. Lysov Y., Barsky V., Urasov D., Urasov R., Cherepanov A., Mamaev D., Yegorov Y., Chudinov A., Surzhikov S., Rubina A., Smoldovskaya O., Zasedatelev A. 2017. Microarray analyzer based on wide field fluorescent microscopy with laser illumination and a device for speckle suppression. Biomed. Opt. Express. 8, 4798. https://doi.org/10.1364/boe.8.004798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rubina A.Y., Dementieva E.I., Stomakhin A.A., Darii E.L., Pan’kov S. V., Barsky V.E., Ivanov S.M., Konovalova E. V., Mirzabekov A.D. 2003. Hydrogel-based protein microchips: Manufacturing, properties, and applications. Biotechniques. 34, 1008–1022.

    Article  CAS  Google Scholar 

  21. Gu Y., Hu X., Liu C., Qv X., Xu C. 2008. Interleukin (IL)-17 promotes macrophages to produce IL-8, IL-6 and tumour necrosis factor-α in aplastic anaemia. Br. J. Haematol. 142, 109–114. https://doi.org/10.1111/j.1365-2141.2008.07161.x

    Article  CAS  PubMed  Google Scholar 

  22. Chow A.W., Liang J.F., Wong J.S., Fu Y., Tang N.L., Ko W. 2010. Polarized secretion of interleukin (IL)-6 and IL-8 by human airway epithelia 16HBE14o-cells in response to cationic polypeptide challenge. PLoS One. 5, e12091. https://doi.org/10.1371/journal.pone.0012091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao X., Sun X., Gao F., Luo J., Sun Z. 2011. Effects of ulinastatin and docataxel on breast tumor growth and expression of IL-6, IL-8, and TNF-α. J. Exp. Clin. Cancer Res. 30 (1), 22. https://doi.org/10.1186/1756-9966-30-22

  24. Zhao Q., Kim T., Pang J., Sun W., Yang X., Wang J., Song Y., Zhang H., Sun H., Rangan V., Deshpande S., Tang H., Cvijic M.E., Westhouse R., Olah T., et al. 2017. A novel function of CXCL10 in mediating monocyte production of proinflammatory cytokines. J. Leukoc. Biol. 102, 1271–1280. https://doi.org/10.1189/jlb.5a0717-302

    Article  CAS  PubMed  Google Scholar 

  25. Aillot L., Bonnin M., Ait-Goughoulte M., Bendriss-Vermare N., Maadadi S., Dimier L., Subic M., Scholtes C., Najera I., Zoulim F., Lucifora J., Durantel D. 2018. Interaction between Toll-like receptor 9-CpG oligodeoxynucleotides and hepatitis B virus virions leads to entry inhibition in hepatocytes and reduction of alpha interferon production by plasmacytoid dendritic cells. Antimicrob. Agents Chemother. 62, e01741-17. https://doi.org/10.1128/AAC.01741-17

  26. Tanaka F., Migita K., Kawabe Y., Aoyagi T., Ida H., Kawakami A., Eguchi K. 2004. Interleukin-18 induces serum amyloid A (SAA) protein production from rheumatoid synovial fibroblasts. Life Sci. 74, 1671–1679. https://doi.org/10.1016/j.lfs.2003.08.025

    Article  CAS  PubMed  Google Scholar 

  27. Yamada T., Wada A., Itoh K., Igari J. 2000. Serum amyloid A secretion from monocytic leukaemia cell line THP-1 and cultured human peripheral monocytes. Scand. J. Immunol. 52, 7–12. https://doi.org/10.1046/j.1365-3083.2000.00734.x

    Article  CAS  PubMed  Google Scholar 

  28. Kostareva O.S., Gabdulkhakov A.G., Kolyadenko I.A., Garber M.B., Tishchenko S.V. 2019. Interleukin-17: Functional and structural features, application as a therapeutic target. Biochemistry (Moscow). 84 (Suppl. 1), S193–S205. https://doi.org/10.1134/S0006297919140116

    Article  CAS  PubMed  Google Scholar 

  29. Harrison O.J., Srinivasan N., Pott J., Schiering C., Krausgruber T., Ilott N.E., Maloy K.J. 2015. Epithelial-derived IL-18 regulates Th17 cell differentiation and Foxp3+ Treg cell function in the intestine. Mucosal Immunol. 8, 1226–1236. https://doi.org/10.1038/mi.2015.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Okazawa A., Kanai T., Nakamaru K., Sato T., Inoue N., Ogata H., Iwao Y., Ikeda M., Kawamura T., Makita S., Uraushihara K., Okamoto R., Yamazaki M., Kurimoto M., Ishii H., et al. 2004. Human intestinal epithelial cell-derived interleukin (IL)-18, along with IL2, IL-7 and IL-15, is a potent synergistic factor for the proliferation of intraepithelial lymphocytes. Clin. Exp. Immunol. 136, 269–276. https://doi.org/10.1111/j.1365-2249.2004.02431.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen W., Pilling D., Gomer R.H. 2017. C-reactive protein (CRP) but not the related pentraxins serum amyloid P and PTX3 inhibits the proliferation and induces apoptosis of the leukemia cell line Mono Mac 6. BMC Immunol. 18, 47. https://doi.org/10.1186/s12865-017-0230-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kijanka G., IpCho S., Baars S., Chen H., Hadley K., Beveridge A., Gould E., Murphy D. 2009. Rapid characterization of binding specificity and cross-reactivity of antibodies using recombinant human protein arrays. J. Immunol. Methods. 340, 132–137. https://doi.org/10.1016/j.jim.2008.10.008

    Article  CAS  PubMed  Google Scholar 

  33. Predki P.F., Mattoon D., Bangham R., Schweitzer B., Michaud G. 2005. Protein microarrays: a new tool for profiling antibody cross-reactivity. Hum. Antibodies. 14, 7–15. https://doi.org/10.3233/hab-2005-141-202

    Article  CAS  PubMed  Google Scholar 

  34. Arora M. 2013. Cell culture media: A review. Mater. Methods. 3, 175. https://doi.org/10.13070/mm.en.3.175

  35. Yang Z., Xiong H.-R. 2012. Culture conditions and types of growth media for mammalian cells. In: Biomedical Tissue Culture. Eds Ceccherini-Nelly L., Matteoly B. InTech, pp. 1–16. https://doi.org/10.5772/52301.

  36. Galesi A.L.L., Tamashiro W.M.S.C., Moraes A.M. 2004. The effect of medium composition on interleukin-2 production by murine EL-4 thymoma cells. Braz. J. Chem. Eng. 21, 165–173. https://doi.org/10.1590/S0104-66322004000200005

    Article  CAS  Google Scholar 

  37. Datta P. 2019. Overview of other sources of interferences in immunoassays. In: Accurate Results in the Clinical Laboratory. Elsevier, pp. 75–82. https://doi.org/10.1016/b978-0-12-813776-5.00007-8.

  38. Browne R.W., Kantarci A., LaMonte M.J., Andrews C.A., Hovey K.M., Falkner K.L., Cekici A., Stephens D., Genco R.J., Scannapieco F.A., van Dyke T.E., Wactawski-Wende J. 2013. Performance of multiplex cytokine assays in serum and saliva among community-dwelling postmenopausal women. PLoS One. 8, e59498. https://doi.org/10.1371/journal.pone.0059498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fichorova R.N., Richardson-Harman N., Alfano M., Belec L., Carbonneil C., Chen S., Cosentino L., Curtis K., Dezzutti C.S., Donoval B., Doncel G.F., Donaghay M., Grivel J.C., Guzman E., Hayes M., et al. 2008. Biological and technical variables affecting immunoassay recovery of cytokines from human serum and simulated vaginal fluid: A multicenter study. Anal. Chem. 80, 4741–4751. https://doi.org/10.1021/ac702628q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wood M.W., Nordone S.K., Vaden S.L., Breitschwerdt E.B. 2011. Assessment of urine solute and matrix effects on the performance of an enzyme-linked immunosorbent assay for measurement of interleukin-6 in dog urine. J. Vet. Diagn. Investig. 23, 316–320. https://doi.org/10.1177/104063871102300219

    Article  Google Scholar 

  41. de Jager W., Prakken B., Rijkers G.T. 2009. Cytokine multiplex immunoassay: Methodology and (clinical) applications. In: T Cell Protocols. Methods in Molecular Biology, vol. 514. Ed. De Libero G. Humana Press, pp. 119–133. https://doi.org/10.1007/978-1-60327-527-9_9.

Download references

Funding

The study was financed by the Russian Science Foundation (project no. 19-15-00283).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Rubina.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The study does not contain any studies performed using biological materials.

Conflict of interests. The authors declare they have no conflict of interest.

Additional information

Abbreviations: CRP, C-reactive protein; FBS, fetal bovine serum; IL, interleukin; IP10/CXCL10, interferon-γ-induced protein-10/CXC-chemokine-10; SAA, serum amyloid A protein; TNFα, tumor necrosis factor α; RPMI-1640, Roswell Park Memorial Institute medium 1640.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voloshin, S.A., Feyzkhanova, G.U., Savvateeva, E.N. et al. Microarray for Quantitative Determination of Inflammatory Biomarkers in a Culture Medium. Mol Biol 54, 919–928 (2020). https://doi.org/10.1134/S0026893320060138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320060138

Keywords:

Navigation