Skip to main content
Log in

Identification of the Molecular Partners of Lymphocyte Phosphatase-Associated Phosphoprotein (LPAP) That Are Involved in Human Lymphocyte Activation

  • MOLECULAR MECHANISMS OF ADAPTIVE IMMUNITY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Lymphocyte phosphatase-associated phosphoprotein (LPAP) is a small transmembrane protein that is found in lymphocytes and is tightly associated with the phosphatase CD45. The function of LPAP is still unknown. Studies of the LPAP interactome may reveal new details of how C45 and lymphocyte signaling in general are regulated. LPAP binding partners were sought using coimmunoprecipitation coupled with mass spectrometry, stabilization of protein complexes with chemical crosslinkers, and Blue Native electrophoresis. In addition to CD45, several proteins were identified as LPAP partners, including CD71, CD98, cytoskeletal proteins, the amino acid transporter SLC1A4, and the cell signaling component HS1. It was confirmed that more than 70% of LPAP molecules were bound with CD45 in a 1 : 1 complex. The effect of CD45 on LPAP was studied in CEM and Jurkat cells with a CD45 knockout. The LPAP levels in the cells were 10% of the level in wild-type cells. In the absence of CD45, LPAP phosphorylation at Ser-153 and Ser-163 was not affected, whereas phosphorylation at Ser-99 and Ser-172 decreased significantly. Based on the results, CD45 was assumed to play a role in regulating LPAP expression and phosphorylation status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Schraven B., Kirchgessner H., Gaber B., Samstag Y., Meuer S. 1991. A functional complex is formed in human T lymphocytes between the protein tyrosine phosphatase CD45, the protein tyrosine kinase p56lck and pp32, a possible common substrate. Eur. J. Immunol. 21 (10), 2469–2477.

    Article  CAS  Google Scholar 

  2. Leitenberg D., Falahati R., Lu D.D., Takeda A. 2007. CD45-associated protein promotes the response of primary CD4 T cells to low-potency T-cell receptor (TCR) stimulation and facilitates CD45 association with CD3/TCR and lck. Immunology. 121 (4), 545–554.

    Article  CAS  Google Scholar 

  3. Kleiman E., Salyakina D., De Heusch M., Hoek K.L., Llanes J.M., Castro I., Wright J.A., Clark E.S., Dykxhoorn D.M., Capobianco E., Takeda A., Renauld J.C., Khan W.N. 2015. Distinct transcriptomic features are associated with transitional and mature B-cell populations in the mouse spleen. Front. Immunol. 6, 30.

    Article  Google Scholar 

  4. Rheinländer A., Schraven B., Bommhardt U. 2018. CD45 in human physiology and clinical medicine. Immunol. Lett. 196, 22–32.

    Article  Google Scholar 

  5. Schraven B., Schoenhaut D., Bruyns E., Koretzky G., Eckerskorn C., Wallich R., Kirchgessner H., Sakorafas P., Labkovsky B., Ratnofsky S. 1994. LPAP, a novel 32-kDa phosphoprotein that interacts with CD45 in human lymphocytes. J. Biol. Chem. 269 (46), 29102–29111.

    CAS  PubMed  Google Scholar 

  6. Kruglova N.A., Meshkova T.D., Kopylov A.T., Mazurov D.V., Filatov A.V. 2017. Constitutive and activation-dependent phosphorylation of lymphocyte phosphatase-associated phosphoprotein (LPAP). PLoS One. 12 (8), e0182468.

    Article  Google Scholar 

  7. Motoya S., Kitamura K., Matsuda A., Maizel A.L., Yamamoto H., Takeda A. 1999. Interaction between CD45-AP and protein-tyrosine kinases involved in T cell receptor signaling. J. Biol. Chem. 274 (3), 1407–1414.

    Article  CAS  Google Scholar 

  8. Veillette A., Soussou D., Latour S., Davidson D., Gervais F.G. 1999. Interactions of CD45-associated protein with the antigen receptor signaling machinery in T-lymphocytes. J. Biol. Chem. 274 (20), 14392–14399.

    Article  CAS  Google Scholar 

  9. Tsoy T.V., Kruglova N.A., Filatov A.V. 2018. Lymphocyte phosphatase-associated phosphoprotein is a substrate of protein kinase CK2. Biochemistry (Moscow). 83 (11), 1380–1387.

    CAS  PubMed  Google Scholar 

  10. Stelzl U., Worm U., Lalowski M., Haenig C., Brembeck F.H., Goehler H., Stroedicke M., Zenkner M., Schoenherr A., Koeppen S., Timm J., Mintzlaff S., Abraham C., Bock N., Kietzmann S., et al. 2005. A human protein-protein interaction network: A resource for annotating the proteome. Cell. 122 (6), 957–968.

    Article  CAS  Google Scholar 

  11. Ran F.A., Hsu P.D., Lin C.-Y., Gootenberg J.S., Konermann S., Trevino A.E., Scott D.A., Inoue A., Matoba S., Zhang Y., Zhang F. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 154 (6), 1380–1389.

    Article  CAS  Google Scholar 

  12. Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S., Agarwala V., Li Y., Fine E.J., Wu X., Shalem O., Cradick T.J., Marraffini L.A., Bao G., Zhang F. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31 (9), 827–832.

    Article  CAS  Google Scholar 

  13. Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., Norville J.E., Church G.M. 2013. RNA-guided human genome engineering via Cas9. Science. 339 (6121), 823–826.

    Article  CAS  Google Scholar 

  14. Swamy M., Siegers G.M., Minguet S., Wollscheid B., Schamel W.W.A. 2006. Blue native polyacrylamide gel electrophoresis (BN-PAGE) for the identification and analysis of multiprotein complexes. Sci. Signal. 2006 (345), pl4.

    Article  Google Scholar 

  15. Kinoshita E., Kinoshita-Kikuta E. 2011. Improved Phos-tag SDS-PAGE under neutral pH conditions for advanced protein phosphorylation profiling. Proteomics. 11 (2), 319–323.

    Article  CAS  Google Scholar 

  16. Filatov A.V., Krotov G.I., Zgoda V.G., Volkov Y. 2007. Fluorescent immunoprecipitation analysis of cell surface proteins: A methodology compatible with mass-spectrometry. J. Immunol. Methods. 319 (1–2), 21–33.

    Article  CAS  Google Scholar 

  17. Krotov G.I., Krutikova M.P., Zgoda V.G., Fiatov A.V. 2007. Profiling of the CD4 receptor complex proteins. Biochemistry (Moscow). 72 (11), 1216–1224.

    CAS  PubMed  Google Scholar 

  18. Hao J.-J., Zhu J., Zhou K., Smith N., Zhan X. 2005. The coiled-coil domain is required for HS1 to bind to F-actin and activate Arp2/3 complex. J. Biol. Chem. 280 (45), 37988–37994.

    Article  CAS  Google Scholar 

  19. Maruyama T., Nara K., Yoshikawa H., Suzuki N. 2006. Txk, a member of the non-receptor tyrosine kinase of the Tec family, forms a complex with poly(ADP-ribose) polymerase 1 and elongation factor 1α and regulates interferon-γ gene transcription in Th1 cells. Clin. Exp. Immunol. 147 (1), 164–175.

    Article  Google Scholar 

  20. Schueler M., Braun D.A., Chandrasekar G., Gee H.Y., Klasson T.D., Halbritter J., Bieder A., Porath J.D., Airik R., Zhou W., LoTurco J.J., Che A., Otto E.A., Böckenhauer D., Sebire N.J., et al. 2015. DCDC2 mutations cause a renal-hepatic ciliopathy by disrupting Wnt signaling. Am. J. Hum. Genet. 96 (1), 81–92.

    Article  CAS  Google Scholar 

  21. Cahir McFarland E.D., Thomas M.L. 1995. CD45 protein-tyrosine phosphatase associates with the WW domain-containing protein, CD45AP, through the transmembrane region. J. Biol. Chem. 270 (47), 28103–28107.

    Article  CAS  Google Scholar 

  22. Snead D., Eliezer D. 2019. Intrinsically disordered proteins in synaptic vesicle trafficking and release. J. Biol. Chem. 294 (10), 3325–3342.

    Article  CAS  Google Scholar 

  23. Kitamura K., Matsuda A., Motoya S., Takeda A. 1997. CD45-associated protein is a lymphocyte-specific membrane protein expressed in two distinct forms. Eur. J. Immunol. 27 (2), 383–388.

    Article  CAS  Google Scholar 

  24. Ding I., Bruyns E., Li P., Magada D., Paskind M., Rodman L., Seshadri T., Alexander D., Giese T., Schraven B. 1999. Biochemical and functional analysis of mice deficient in expression of the CD45-associated phosphoprotein LPAP. Eur. J. Immunol. 29 (12), 3956–3961.

    Article  CAS  Google Scholar 

  25. Matsuda A., Motoya S., Kimura S., McInnis R., Maizel A.L., Takeda A. 1998. Disruption of lymphocyte function and signaling in CD45-associated protein-null mice. J. Exp. Med. 187 (11), 1863–1870.

    Article  CAS  Google Scholar 

  26. Takeda A., Matsuda A., Paul R.M.J., Yaseen N.R. 2004. CD45-associated protein inhibits CD45 dimerization and up-regulates its protein tyrosine phosphatase activity. Blood 103 (9), 3440–3447.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-34-00705 for proteomics experiments; project no. 17-04-00526 for construction of knockout and stably transfected cells).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kruglova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by T. Tkacheva

Abbreviations: CIP, calf intestinal alkaline phosphatase; co-IP/MS, coimmunoprecipitation coupled with mass spectrometry; DTME, dithiobis(maleimidoethane); DTT, dithiothreitol; DSP, dithiobis(succinimidyl propionate); FIPA, fluorescence immunoprecipitation assay; IP, immunoprecipitation; LC–MS, liquid chromatography–mass spectrometry; LPAP, lymphocyte phosphatase-associated phosphoprotein; PAGE, polyacrylamide gel electrophoresis; PMA, phorbol 12-myristate 13-acetate; R6G rhodamine 6G, succinimidyl ester; RIPA, radioimmunoprecipitation assay; SDS, sodium dodecyl sulfate; WB, Western blotting.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruglova, N.A., Kopylov, A.T. & Filatov, A.V. Identification of the Molecular Partners of Lymphocyte Phosphatase-Associated Phosphoprotein (LPAP) That Are Involved in Human Lymphocyte Activation. Mol Biol 53, 739–747 (2019). https://doi.org/10.1134/S002689331905011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689331905011X

Keywords:

Navigation