Skip to main content
Log in

Lymphocyte Phosphatase-Associated Phosphoprotein Is a Substrate of Protein Kinase CK2

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Lymphocyte phosphatase-associated phosphoprotein (LPAP) is a molecular partner of CD45 phosphatase that plays a key role in the regulation of antigen-specific activation of lymphocytes. The functions of LPAP still remain unknown. We believe that studying LPAP phosphorylation pathways could shed light on its functions. In this work, we studied the phosphorylation of LPAP ectopically expressed in non-lymphoid cells in order to determine the effect of LPAP interaction partners on its phosphorylation. We found that phosphorylation at Ser153 and Ser163 in non-hematopoietic HEK293 cells was conserved, while phosphorylation at Ser99 and Ser172 was almost absent. The pattern of LPAP phosphorylation in K562 erythroid and U937 myeloid cells expressing endogenous CD45 protein was similar to that observed in T and B lymphocytes. We demonstrated for the first time that LPAP is a substrate for protein kinase CK2 that phosphorylates it at Ser153, presumably ensuring LPAP resistance to degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CIP:

calf intestinal phosphatase

CK2:

casein kinase 2

2D-DIGE:

two-dimensional difference gel electrophoresis

DTT:

dithiothreitol

IEF:

isoelectric focusing

LPAP:

lymphocyte phosphatase-associated phosphoprotein

PAGE:

polyacrylamide gel electrophoresis

PMA:

phorbol 12-myristate 13-acetate

SDS:

sodium dodecyl sulfate

TBB:

4,5,6,7-tetrabromo-2-azabenzimidazole

WB:

Western blotting

References

  1. Schraven, B., Schoenhaut, D., Bruyns, E., Koretzky, G., Eckerskorn, C., Wallich, R., Kirchgessner, H., Sakorafas, P., Labkovsky, B., Ratnofsky, S., and Meuer, S. (1994) LPAP, a novel 32-kDa phosphoprotein that interacts with CD45 in human lymphocytes, J. Biol. Chem., 269, 29102–29111.

    PubMed  CAS  Google Scholar 

  2. Matsuda, A., Motoya, S., Kimura, S., McInnis, R., Maizel, A. L., and Takeda, A. (1998) Disruption of lymphocyte function and signaling in CD45-associated protein-null mice, J. Exp. Med., 187, 1863–1870.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kung, C., Okumura, M., Seavitt, J. R., Noll, M. E., White, L. S., Pingel, J. T., and Thomas, M. L. (1999) CD45-associated protein is not essential for the regulation of antigen receptor-mediated signal transduction, Eur. J. Immunol., 29, 3951–3955.

    Article  PubMed  CAS  Google Scholar 

  4. Ding, I., Bruyns, E., Li, P., Magada, D., Paskind, M., Rodman, L., Seshadri, T., Alexander, D., Giese, T., and Schraven, B. (1999) Biochemical and functional analysis of mice deficient in expression of the CD45-associated phosphoprotein LPAP, Eur. J. Immunol., 29, 3956–3961.

    Article  PubMed  CAS  Google Scholar 

  5. Kleiman, E., Salyakina, D., De Heusch, M., Hoek, K. L., Llanes, J. M., Castro, I., Wright, J. A., Clark, E. S., Dykxhoorn, D. M., Capobianco, E., Takeda, A., Renauld, J.-C., and Khan, W. N. (2015) Distinct transcriptomic features are associated with transitional and mature B-cell populations in the mouse spleen, Front. Immunol., 6,30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wolf, I., Bouquet, C., and Melchers, F. (2016) cDNA-library testing identifies transforming genes cooperating with c-myc in mouse pre-B cells, Eur. J. Immunol., 46, 2555–2565.

    Article  PubMed  CAS  Google Scholar 

  7. Ju, H., Lim, B., Kim, M., Kim, Y. S., Kim, W. H., Ihm, C., Noh, S.-M., Han, D. S., Yu, H.-J., Choi, B. Y., and Kang, C. (2009) A regulatory polymorphism at position-309 in PTPRCAP is associated with susceptibility to diffuse-type gastric cancer and gene expression, Neoplasia, 11, 1340–1347.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Krotov, G. I., Krutikova, M. P., Zgoda, V. G., and Filatov, A. V. (2007) Profiling of the CD4 receptor complex proteins, Biochemistry (Moscow), 72, 1216–1224.

    Article  CAS  Google Scholar 

  9. Leitenberg, D., Falahati, R., Lu, D. D., and Takeda, A. (2007) CD45-associated protein promotes the response of primary CD4 T cells to low-potency T-cell receptor (TCR) stimulation and facilitates CD45 association with CD3/TCR and Lck, Immunology, 121, 545–554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kruglova, N. A., Meshkova, T. D., Kopylov, A. T., Mazurov, D. V., and Filatov, A. V. (2017) Constitutive and activation-dependent phosphorylation of lymphocyte phosphatase-associated phosphoprotein (LPAP), PLoS One, 12, e0182468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Filatov, A., Kruglova, N., Meshkova, T., and Mazurov, D. (2015) Lymphocyte phosphatase-associated phosphoprotein proteoforms analyzed using monoclonal antibodies, Clin. Transl. Immunol., 4, e44.

    Article  CAS  Google Scholar 

  12. Pierre, F., Chua, P. C., O’Brien, S. E., Siddiqui-Jain, A., Bourbon, P., Haddach, M., Michaux, J., Nagasawa, J., Schwaebe, M. K., Stefan, E., Vialettes, A., Whitten, J. P., Chen, T. K., Darjania, L., Stansfield, R., Anderes, K., Bliesath, J., Drygin, D., Ho, C., Omori, M., Proffitt, C., Streiner, N., Trent, K., Rice, W. G., and Ryckman, D. M. (2011) Discovery and SAR of 5-(3-chlorophenyl-amino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer, J. Med. Chem., 54, 635–654.

    Article  PubMed  CAS  Google Scholar 

  13. Franchin, C., Borgo, C., Zaramella, S., Cesaro, L., Arrigoni, G., Salvi, M., and Pinna, L. (2017) Exploring the CK2 paradox: restless, dangerous, dispensable, Pharmaceuticals, 10, E11.

    Article  PubMed  CAS  Google Scholar 

  14. Pinna, L. A. (2002) Protein kinase CK2: a challenge to canons, J. Cell Sci., 115, 3873–3878.

    Article  PubMed  CAS  Google Scholar 

  15. Kuenzel, E., Mulligan, J., and Sommercorn, J. (1987) Substrate specificity determinants for casein kinase II as deduced from studies with synthetic peptides, J. Biol. Chem., 262, 9136–9140.

    PubMed  CAS  Google Scholar 

  16. Ahmad, K. A., Wang, G., Unger, G., Slaton, J., and Ahmed, K. (2008) Protein kinase CK2-a key suppressor of apoptosis, Adv. Enzyme Regul., 48, 179–187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ruzzene, M., Penzo, D., and Pinna, L. A. (2002) Protein kinase CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) induces apoptosis and caspase-dependent degradation of haematopoietic lineage cell-specific protein 1 (HS1) in Jurkat cells, Biochem. J., 364, 41–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ulges, A., Witsch, E. J., Pramanik, G., Klein, M., Birkner, K., Buhler, U., Wasser, B., Luessi, F., Stergiou, N., Dietzen, S., Bruhl, T.-J., Bohn, T., Bundgen, G., Kunz, H., Waisman, A., Schild, H., Schmitt, E., Zipp, F., and Boppa, T. (2016) Protein kinase CK2 governs the molecular decision between encephalitogenic TH17 cell and Treg cell development, PNAS, 113, 10145–10150.

    Article  PubMed  CAS  Google Scholar 

  19. Ampofo, E., Sokolowsky, T., Gotz, C., and Montenarh, M. (2013) Functional interaction of protein kinase CK2 and activating transcription factor 4 (ATF4), a key player in the cellular stress response, Biochim. Biophys. Acta, 1833, 439–451.

    Article  PubMed  CAS  Google Scholar 

  20. Scaglioni, P. P., Yung, T. M., Cai, L. F., Erdjument-Bromage, H., Kaufman, A. J., Singh, B., Teruya-Feldstein, J., Tempst, P., and Pandolfi, P. P. (2006) A CK2-dependent mechanism for degradation of the PML tumor suppressor, Cell, 126, 269–283.

    Article  PubMed  CAS  Google Scholar 

  21. Ampofo, E., Kietzmann, T., Zimmer, A., Jakupovic, M., Montenarh, M., and Gotz, C. (2010) Phosphorylation of the von Hippel-Lindau protein (VHL) by protein kinase CK2 reduces its protein stability and affects p53 and HIF-1α mediated transcription, IJBCB, 42, 1729–1735.

    CAS  Google Scholar 

  22. Desagher, S., Osen-Sand, A., Montessuit, S., Magnenat, E., Vilbois, F., Hochmann, A., Journot, L., Antonsson, B., and Martinou, J.-C. (2001) Phosphorylation of Bid by casein kinases I and II regulates its cleavage by caspase 8, Mol. Cell, 8, 601–611.

    Article  PubMed  CAS  Google Scholar 

  23. Krippner-Heidenreich, A., Talanian, R. V., Sekul, R., Kraft, R., Thole, H., Ottleben, H., and Lu, B. (2001) Targeting of the transcription factor Max during apoptosis: phosphorylation-regulated cleavage by caspase-5 at an unusual glutamic acid residue in position P11, Biochem. J., 358, 705–715.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Channavajhala, P., and Seldin, D. C. (2002) Functional interaction of protein kinase CK2 and c-Myc in lymphomagenesis, Oncogene, 21, 5280–5288.

    Article  PubMed  CAS  Google Scholar 

  25. Vazquez, F., Grossman, S. R., Takahashi, Y., Rokas, M. V., Nakamura, N., and Sellers, W. R. (2001) Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex, J. Biol. Chem., 276, 48627–48630.

    Article  PubMed  CAS  Google Scholar 

  26. Yin, X., Gu, S., and Jiang, J. X. (2001) The development-associated cleavage of lens connexin 45.6 by caspase-3-like protease is regulated by casein kinase II-mediated phosphorylation, J. Biol. Chem., 276, 34567–34572.

    Article  PubMed  CAS  Google Scholar 

  27. Walter, J., Schindzielorz, A., Grunberg, J., and Haass, C. (1999) Phosphorylation of presenilin-2 regulates its cleavage by caspases and retards progression of apoptosis, PNAS, 96, 1391–1396.

    Article  PubMed  CAS  Google Scholar 

  28. Zhirnov, O. P., and Syrtzev, V. V. (2009) Influenza virus pathogenicity is determined by caspase cleavage motifs located in the viral proteins, J. Mol. Genet. Med., 3, 124–132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Filatov.

Additional information

Published in Russian in Biokhimiya, 2018, Vol. 83, No. 11, pp. 1698–1707.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM18-184, October 22, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsoy, T.D., Kruglova, N.A. & Filatov, A.V. Lymphocyte Phosphatase-Associated Phosphoprotein Is a Substrate of Protein Kinase CK2. Biochemistry Moscow 83, 1380–1387 (2018). https://doi.org/10.1134/S0006297918110081

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918110081

Keywords

Navigation