Skip to main content
Log in

Neural Crest—An Unusual Population of Embryonic Cells

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The neural crest (NC) in embryos of vertebrates represents a cell population formed at the border of the neural plate. These cells retain pluripotency, express a set of specific markers, and become multipotent upon their migration away from the neural tube to give rise to numerous derivatives. The genes specific for vertebrate NC appeared in evolution long before vertebrates. Abnormal development of NC cells causes numerous pathologies in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. His W. 1868. Untersuchungen über die erste Anlage des Wirbeltierleibes: die erste Entwickelung des Hühnchens im Ei. Leipzig: Vogel FCW.

    Book  Google Scholar 

  2. Horstadius S. 1950. The Neural Crest: Its Properties and Derivatives in the Light of Experimental Research. London: Oxford Univ. Press.

    Google Scholar 

  3. Katschenko N. 1888. Zur Entwicklungsgeschichte der Selachierembryos. Anat. Anz. 3, 445–467.

    Google Scholar 

  4. Muñoz W.A., Trainor P.A. 2015. Neural crest cell evolution: How and when did a neural crest cell become a neural crest cell. Curr. Top. Dev. Biol. 111, 3–26.

    Article  CAS  PubMed  Google Scholar 

  5. Stone L.S. 1928. Problems concerning the origin and development of the neural crest and cranial ganglia in the vertebrates. Yale J. Biol. Med. 1, 7–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Stone L.S. 1929. Experiments showing the role of migrating neural crest (mesectoderm) in the formation of head skeleton and loose connective tissue in Rana palustris. Wilhelm Roux Arch. EntwMech Org. 118, 40–77.

    Article  CAS  Google Scholar 

  7. Saint-Jeannet J.P., Moody S.A. 2014. Establishing the pre-placodal region and breaking it into placodes with distinct identities. Dev. Biol. 389, 13–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Graham A., Shimeld S.M. 2013. The origin and evolution of the ectodermal placodes. J. Anat. 222, 32–40.

    Article  PubMed  Google Scholar 

  9. Northcutt R.G., Gans C. 1983. The genesis of neural crest and epidermal placodes: A reinterpretation of vertebrate origins. Q. Rev. Biol. 58, 1–28.

    Article  CAS  PubMed  Google Scholar 

  10. Abitua P.B., Gainous T.B., Kaczmarczyk A.N., Winchell C.J., Hudson C., Kamata K., Nakagawa M., Tsuda M., Kusakabe T.G., Levine M. 2015. The pre-vertebrate origins of neurogenic placodes. Nature. 524, 462‒465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Couly G.F., Coltey P.M., Le Douarin N.M. 1993. The triple origin of skull in higher vertebrates: A study in quail–chick chimeras. Development. 117, 409–429.

    CAS  PubMed  Google Scholar 

  12. Le Douarin N.M., Dupin E. 2012. The neural crest in vertebrate evolution. Curr. Opin. Genet. Dev. 22, 381–389.

    Article  CAS  PubMed  Google Scholar 

  13. Le Douarin N.M., Couly G., Creuzet S.E. 2012. The neural crest is a powerful regulator of pre-otic brain development. Dev. Biol. 366, 74–82.

    Article  CAS  PubMed  Google Scholar 

  14. Mongera A., Singh A.P, Levesque M.P., Chen Y.Y., Konstantinidis P., Nüsslein-Volhard C. 2013. Genetic lineage labeling in zebrafish uncovers novel neural crest contributions to the head, including gill pillar cells. Development. 140, 916–925.

    Article  CAS  PubMed  Google Scholar 

  15. Hall B.K. 1997. Germ layers and the germ-layer theory revisited: Primary and secondary germ layers, neural crest as a fourth germ layer, homology, demise of the germ-layer theory. Evol. Biol. 30, 121–186.

    Google Scholar 

  16. Hall B.K. 2000. The neural crest as a fourth germ layer and vertebrates as quadroblastic not triploblastic. Evol. Dev. 2, 3–5.

    Article  CAS  PubMed  Google Scholar 

  17. Hall B.K. 2018. Germ layers, the neural crest and emergent organization in development and evolution. Genesis. e23103. https://doi.org/10.1002/dvg.23103

  18. Meulemans D., Bronner-Fraser M. 2004. Gene-regulatory interactions in neural crest evolution and development. Dev. Cell. 7, 291–299.

    Article  CAS  PubMed  Google Scholar 

  19. DeRobertis E.M., Kuroda H. 2004. Dorsal–ventral patterning and neural induction in Xenopus embryos. Annu. Rev. Cell Dev. Biol. 20, 285–308.

    Article  CAS  Google Scholar 

  20. Duband J.L., Dady A., Fleury V. 2015. Resolving time and space constraints during neural crest formation and delamination. Curr. Top. Dev. Biol. 111, 27–67.

    Article  CAS  PubMed  Google Scholar 

  21. Green S.A., Simões-Costa M., Bronner M.E. 2015. Evolution of vertebrates as viewed from the crest. Nature. 520, 474–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Simões-Costa M., Bronner M.E. 2015. Establishing neural crest identity: A gene regulatory recipe. Development. 142, 242–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Halbleib J.M., Nelson W. J. 2006. Cadherins in development: Cell adhesion, sorting, and tissue morphogenesis. Gen. Dev. 20, 3199–3214.

    Article  CAS  Google Scholar 

  24. Kalcheim C. 2015. Epithelial–mesenchymal transitions during neural crest and somite development. J. Clin. Med. 5, pii: E1. https://doi.org/10.3390/jcm5010001

    Article  PubMed  Google Scholar 

  25. Taneyhill L.A., Schiffmacher A.T. 2013. Cadherin dynamics during neural crest cell ontogeny. Prog. Mol. Biol. Transl. Sci. 116, 291–315.

    Article  CAS  PubMed  Google Scholar 

  26. York J.R., Yuan T., Zehnder K., McCauley D.W. 2017. Lamprey neural crest migration is Snail-dependent and occurs without a differential shift in cadherin expression. Dev. Biol. 428, 176–187.

    Article  CAS  PubMed  Google Scholar 

  27. Taneyhill L.A., Schiffmacher A.T. 2017. Should I stay or should I go? Cadherin function and regulation in the neural crest. Genesis. 55, e23028. https://doi.org/10.1002/dvg.23028

    Article  CAS  Google Scholar 

  28. Ezin A.M., Fraser S.E., Bronner-Fraser M. 2009. Fate map and morphogenesis of presumptive neural crest and dorsal neural tube. Dev. Biol. 330, 221–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Beloussov L.V., Luchinskaia N.N., Stein A.A. 2000. Tension-dependent collective cell movements in the early gastrula ectoderm of Xenopus laevis embryos. Dev. Genes Evol. 210, 92–104.

    Article  CAS  PubMed  Google Scholar 

  30. Evstifeeva A.Yu., Belousov L.V. 2016. Surface microdeformations and regulation of cell movements in Xenopus development. Russ. J. Dev. Biol. 47 (1), 1–10.

    Article  Google Scholar 

  31. Eroshkin F.M., Zaraisky A.G. 2017. Mechano-sensitive regulation of gene expression during the embryonic development. Genesis. 55, e23026. https://doi.org/10.1002/dvg.23026

    Article  Google Scholar 

  32. Xiong F., Tentner A.R., Huang P., Gelas A., Mosaliganti K.R., Souhait L., Rannou N., Swinburne I.A., Obholzer N.D., Cowgill P.D., Schier A.F., Megason S.G. 2013. Specified neural progenitors sort to form sharp domains after noisy Shh signaling. Cell. 153, 550–561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stuhlmiller T.J., Garcia-Castro M.I. 2012. FGF/MAPK signaling is required in the gastrula epiblast for avian neural crest induction. Development. 139, 289–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Buitrago-Delgado E., Nordin K., Rao A., Geary L., LaBonne C. 2015. Shared regulatory programs suggest retention of blastula-stage potential in neural crest cells. Science. 348, 1332–1335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Light W., Vernon A.E., Lasorella A., Iavarone A., LaBonne C. 2005. Xenopus Id3 is required downstream of Myc for the formation of multipotent neural crest progenitor cells. Development. 132, 1831–1841.

    Article  CAS  PubMed  Google Scholar 

  36. Liu Y., Labosky P.A. 2008. Regulation of embryonic stem cell self-renewal and pluripotency by Foxd3. Stem Cells. 26, 2475–2484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin Y., Li X. Y., Willis A.L., Liu C., Chen G., Weiss S.J. 2014. Snail1-dependent control of embryonic stem cell pluripotency and lineage commitment. Nat. Commun. 5, 3070. pmid: 24401905https://doi.org/10.1038/ncomms4070

  38. Abitua P.B., Wagner E., Navarrete I.A., Levine M. 2012. Identification of a rudimentary neural crest in a non-vertebrate chordate. Nature. 492, 104–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jeffery W.R., Strickler A.G., Yamamoto Y. 2004. Migratory neural crest-like cells form body pigmentation in a urochordate embryo. Nature. 431, 696–699.

    Article  CAS  PubMed  Google Scholar 

  40. Jeffery W.R., Chiba T., Krajka F.R., Deyts C., Satoh N., Joly J.S. 2008. Trunk lateral cells are neural crest-like cells in the ascidian Ciona intestinalis: Insights into the ancestry and evolution of the neural crest. Dev. Biol. 324, 152–160.

    Article  CAS  PubMed  Google Scholar 

  41. Pshennikova E., Voronina A. 2012. Expression of the transcription factor Xvent-2 in Xenopus laevis embryogenesis. Am. J. Mol. Biol. 2, 124–131.

    Article  CAS  Google Scholar 

  42. Pshennikova E.S., Voronina A.S. 2016. The proteins of Vent-family and their mRNAs are located in different areas of the tails of zebrafish and Xenopus embryos. Int. J. Biochem. Cell Biol. 79, 388–392.

    Article  CAS  PubMed  Google Scholar 

  43. Gans C., Northcutt R.G. 1983. Neural crest and the origin of vertebrates. A new head. Science. 20, 268–274.

    Article  Google Scholar 

  44. Meulemans D., Bronner-Fraser M. 2004. Gene-regulatory interactions in neural crest evolution and development. Dev. Cell. 7, 291–299.

    Article  CAS  PubMed  Google Scholar 

  45. Jeffery W.R. 2006. Ascidian neural crest-like cells: Phylogenetic distribution, relationship to larval complexity, and pigment cell fate. J. Exp. Zool. B: Mol. Dev. 306, 470–480.

    Article  CAS  Google Scholar 

  46. Bourlat S.J., Juliusdottir T., Lowe C.J. Freeman R., Aronowicz J., Kirschner M., Lander E.S., Thorndyke M., Nakano H., Kohn A.B., Heyland A., Moroz L.L., Copley R.R., Telford M.J. 2006. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature. 444, 85–88.

    Article  CAS  PubMed  Google Scholar 

  47. Putnam N., Butts T., Ferrier D.E.K., Furlong R.F., Hellsten U., Kawashima T., Robinson-Rechavi M., Shoguchi E., Terry A., Yu J.K., Benito-Gutiérrez E.L., Dubchak I., Garcia-Fernàndez J., Gibson-Brown J.J., Grigoriev I.V., et al. 2008. The amphioxus genome and the evolution of the chordate karyotype. Nature. 453, 1064–1071.

    Article  CAS  PubMed  Google Scholar 

  48. Yu J.K., Meulemans D., McKeown S.J., Bronner-Fraser M. 2008. Insights from the amphioxus genome on the origin of vertebrate neural crest. Genome Res. 18, 1127–1132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yu J.-K. 2010. The evolutionary origin of the vertebrate neural crest and its developmental gene regulatory network: Insights from amphioxus. Zoology (Jena). 113, 1–9.

    Article  PubMed  Google Scholar 

  50. Holland P.W., Garcia-Fernandez J., Williams N.A., Sidow A. 1994. Gene duplications and the origins of vertebrate development. Dev. Suppl. 125–133.

  51. Abitua P.B., Wagner E., Navarrete I.A., Levine M. 2012. Identification of a rudimentary neural crest in a non-vertebrate chordate. Nature. 492, 104–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sauka-Spengler T., Meulemans D., Jones M., Bronner-Fraser M. 2007. Ancient evolutionary origin of the neural crest gene regulatory network. Dev. Cell. 13, 405‒420.

    Article  CAS  PubMed  Google Scholar 

  53. Green S.A., Bronner M.E. 2014. The lamprey: A jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits. Differentiation. 87, 44–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Smith J.J. 2015. The sea lamprey meiotic map resolves ancient vertebrate genome duplications. Genome Res. 25, 1081–1090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ono H., Kozmik Z., Yu J.-K., Wada H. 2014. A novel N-terminal motif is responsible for the evolution of neural crest-specific gene-regulatory activity in vertebrate FoxD3. Dev. Biol. 385, 396–404.

    Article  CAS  PubMed  Google Scholar 

  56. Kim Y.J., Lim H., Li Z., Oh Y., Kovlyagina I., Choi I.Y., Dong X., Lee G. 2014. Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor. Cell Stem Cell. 15, 497–506.

    Article  CAS  PubMed  Google Scholar 

  57. Bronner M.E., LeDouarin N.M. 2012. Development and evolution of the neural crest: An overview. Dev. Biol. 366, 2–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim J., Lo L., Dormand E., Anderson D.J. 2003. OX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron. 38, 17–31.

    Article  CAS  PubMed  Google Scholar 

  59. Simoes-Costa M., Bronner M.E. 2013. Insights into neural crest development and evolution from genomic analysis. Genome Res. 23, 1069–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kirillova A., Genikhovich G., Pukhlyakova E. 2018. Germ-layer commitment and axis formation in sea anemone embryonic cell aggregates. Proc. Natl. Acad. Sci. U. S. A. 115, 1813–1818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Martindale M.Q., Pang K., Finnerty J.R. 2004. Investigating the origins of triploblasty: ‘Mesodermal’ gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development. 131, 2463–2474.

    Article  CAS  PubMed  Google Scholar 

  62. Steinmetz P.R.H., Aman A., Kraus J.E.M., Technau U. 2017. Gut-like ectodermal tissue in a sea anemone challenges germ layer homology. Nat. Ecol. Evol. 1, 1535–1542.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fritzenwanker J.H., Saina M., Technau U. 2004. Analysis of forkhead and snail expression reveals epithelial–mesenchymal transitions during embryonic and larval development of Nematostella vectensis. Dev. Biol. 275, 389–402.

    Article  CAS  PubMed  Google Scholar 

  64. Busengdal H., Rentzsch F. 2017. Unipotent progenitors contribute to the generation of sensory cell types in the nervous system of the cnidarian Nematostella vectensis. Dev. Biol. 431, 59–68.

    Article  CAS  PubMed  Google Scholar 

  65. Hörstadius S. 1973. Experimental Embryology of Echinoderms. Oxford, England: Clarendon.

  66. Le Douarin N.M. 2004. The avian embryo as a model to study the development of the neural crest: A long and still ongoing story. Mech. Dev. 121, 1089–1102.

    Article  CAS  PubMed  Google Scholar 

  67. Le Douarin N.M., Dupin E. 2018. The “beginnings” of the neural crest. Dev. Biol. pii: S0012-1606(17)30882-5. https://doi.org/10.1016/j.ydbio.2018.07.019

  68. Green S.A., Uy B.R., Bronner M.E. 2017. Ancient evolutionary origin of vertebrate enteric neurons from trunk-derived neural crest. Nature. 544, 88–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Coelho-Aguiar J.M., Le Douarin N.M., Dupin E. 2013. Environmental factors unveil dormant developmental capacities in multipotent progenitors of the trunk neural crest. Dev. Biol. 384, 3–25.

    Article  CAS  Google Scholar 

  70. John N., Cinelli P., Wegner M., Sommer L. 2011. Transforming growth factor β-mediated Sox10 suppression controls mesenchymal progenitor generation in neural crest stem cells. Stem Cells. 29, 689–699.

    Article  CAS  PubMed  Google Scholar 

  71. Donoghue P.C.J., Graham A., Kelsh R.N. 2008. The origin and evolution of the neural crest. Bioessays. 30, 530–541.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Dupin E., Coelho-Aguiar J.M. 2013. Isolation and differentiation properties of neural crest stem cells. Cytometry A. 83, 38‒47.

    Article  CAS  PubMed  Google Scholar 

  73. Jinno H., Morozova O., Jones K.L., Biernaskie J.A., Paris M., Hosokawa R., Rudnicki M.A., Chai Y., Rossi F., Marra M.A., Miller F.D. 2010. Convergent genesis of an adult neural crest-like dermal stem cell from distinct developmental origins. Stem Cells. 28, 2027–2040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Morrison S.J., White P.M., Zock C., Anderson D.J. 1999. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell. 96, 737–749.

    Article  CAS  PubMed  Google Scholar 

  75. Dyachuk V., Furlan A., Shahidi M.K., Giovenco M., Kaukua N., Konstantinidou C., Pachnis V., Memic F., Marklund U., Müller T., Birchmeier C., Fried K., Ernfors P., Adameyko I. 2014. Neurodevelopment. Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science. 345, 82–87.

    Article  CAS  PubMed  Google Scholar 

  76. Espinosa-Medina I., Outin E., Picard C.A., Chettouh Z., Dymecki S., Consalez G.G., Coppola E., Brunet J.F. 2014. Neurodevelopment. Parasympathetic ganglia derive from Schwann cell precursors. Science. 345, 87–90.

    Article  CAS  PubMed  Google Scholar 

  77. Espinosa-Medina I., Jevans B., Boismoreau F. 2017. Dual origin of enteric neurons in vagal Schwann cell precursors and the sympathetic neural crest. Proc. Natl. Acad. Sci. U. S. A. 114, 11980–11985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Adameyko I., Lallemend F., Aquino J.B., Pereira J.A., Topilko P., Müller T., Fritz N., Beljajeva A., Mochii M., Liste I., Usoskin D., Suter U., Birchmeier C., Ernfors P. 2009. Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell. 139, 366–379.

    Article  CAS  PubMed  Google Scholar 

  79. Adameyko I., Lallemend F., Furlan A.Y. 2012. Sox2 and Mitf cross-regulatory interactions consolidate progenitor and melanocyte lineages in the cranial neural crest. Development. 139, 397–410.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Krause M.P., Dworski S., Feinberg K., Jones K., Johnston A.P., Paul S., Paris M., Peles E., Bagli D., Forrest C.R., Kaplan D.R., Miller F.D. 2014. Direct genesis of functional rodent and human Schwann cells from skin mesenchymal precursors. Stem Cell Rep. 3, 85–100.

    Article  CAS  Google Scholar 

  81. Butler Tjaden N.E., Trainor P.A. 2013. The developmental etiology and pathogenesis of Hirschsprung disease. Transl. Res. 162, 1–15.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang D., Ighaniyan S., Stathopoulos L., Rollo B., Landman K., Hutson J., Newgreen D. 2014. The neural crest: A versatile organ system. Birth Defects Res. C: Embryo Today. 102, 275–298.

    Article  CAS  PubMed  Google Scholar 

  83. Bolande R.P. 1974. The neurocristopathies: A unifying concept of disease arising in neural crest maldevelopment. Hum. Pathol. 5, 409–429.

    Article  Google Scholar 

  84. Hall B.K. 2009. The Neural Crest and Neural Crest Cells in Vertebrate Development and Evolution, 2nd ed. New York: Springer.

    Book  Google Scholar 

  85. Harris M.L., Fufa T.D., Palmer J.W., Joshi S.S., Larson D.M., Incao A., Gildea D.E., Trivedi N.S., Lee A.N., Day C.P., Michael H.T., Hornyak T.J., Merlino G.; NISC Comparative Sequencing Program, Pavan W.J. 2018. A direct link between MITF, innate immunity, and hair graying. PLoS Biol. 16, e2003648. https://doi.org/10.1371/journal.pbio.2003648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rodrigues M., Ezzedine K., Hamzavi I., Pandya A.G., Harris J.E.; Vitiligo Working Group. 2017. New discoveries in the pathogenesis and classification of vitiligo. J. Am. Acad. Dermatol. 77, 1–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Pshennikova.

Additional information

Translated by M. Batrukova

Abbreviations: NC, neural crest; WGD, whole-genome duplication; EMT, epidermal–mesenchymal transition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pshennikova, E.S., Voronina, A.S. Neural Crest—An Unusual Population of Embryonic Cells. Mol Biol 53, 227–236 (2019). https://doi.org/10.1134/S0026893319020134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319020134

Keywords:

Navigation