Skip to main content
Log in

Possible Involvement of Genes Related to Lysosomal Storage Disorders in the Pathogenesis of Parkinson’s Disease

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—

Parkinson’s disease (PD) characterized with slow continuous degeneration of dopaminergic neurons in the substantia nigra is one of the most common neurodegenerative diseases, but its etiology and pathogenesis are not fully understood. The pathogenesis of PD involves the impairment of lysosomal autophagy, which also contributes to lysosomal storage disorders (LSDs). In this work, the expression of genes related to lysosomal autophagy: Hspa8, Lamp2, Tfam, Slc18a2, and Vps35, was analyzed in the brain tissues of mice with the earliest stage of MPTP-induced PD. The detected decrease in Hspa8 and Lamp2 mRNA levels suggests that dysfunction of lysosomal autophagy may be involved in the earliest stages of PD pathogenesis. A decrease in the rate of lysosomal autophagy may affect the accumulation of damaged proteins and the formation of protein inclusions in PD. Genes related to the lysosome function may be involved in development of both LSD and PD at the earliest stages of these pathophysiological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. van de Vijver D.A., Roos R.A., Jansen P.A., Porsius A.J., de Boer A. 2001. Estimation of incidence and prevalence of Parkinson’s disease in the elderly using pharmacy records. Pharmacoepidemiol. Drug Saf. 10 (6), 549‒554.

    Article  CAS  PubMed  Google Scholar 

  2. Claveria L.E., Duarte J., Sevillano M.D., Perez-Sempere A., Cabezas C., Rodriguez F., de Pedro-Cuesta J. 2002. Prevalence of Parkinson’s disease in Cantalejo, Spain: A door-to-door survey. Mov. Disord. 17 (2), 242‒249.

    Article  PubMed  Google Scholar 

  3. Morioka S., Sakata K., Yoshida S., Nakai E., Shiba M., Yoshimura N., Hashimoto T. 2002. Incidence of Parkinson disease in Wakayama, Japan. J. Epidemiol. 12 (6), 403‒407.

    Article  PubMed  Google Scholar 

  4. Chan D.K., Cordato D., Karr M., Ong B., Lei H., Liu J., Hung W.T. 2005. Prevalence of Parkinson’s disease in Sydney. Acta Neurol. Scand. 111 (1), 7‒11.

    Article  CAS  PubMed  Google Scholar 

  5. Racette B.A., Tabbal S.D., Jennings D., Good L., Perlmutter J.S., Evanoff B. 2005. Prevalence of parkinsonism and relationship to exposure in a large sample of Alabama welders. Neurology. 64 (2), 230‒235.

    Article  CAS  PubMed  Google Scholar 

  6. Bernheimer H., Birkmayer W., Hornykiewicz O., Jellinger K., Seitelberger F. 1973. Brain dopamine and the syndromes of Parkinson and Huntington: Clinical, morphological and neurochemical correlations. J. Neurol. Sci. 20 (4), 415‒455.

    Article  CAS  PubMed  Google Scholar 

  7. Fowler C.J. 2007. Update on the neurology of Parkinson’s disease. Neurourol. Urodyn. 26 (1), 103‒109.

    Article  PubMed  Google Scholar 

  8. Cookson M.R., Hardy J., Lewis P.A. 2008. Genetic neuropathology of Parkinson’s disease. Int. J. Clin. Exp. Pathol. 1 (3), 217‒231.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Trinh J., Farrer M. 2013. Advances in the genetics of Parkinson disease. Nat. Rev. Neurol. 9 (8), 445‒454.

    Article  CAS  PubMed  Google Scholar 

  10. Hunn B.H., Cragg S.J., Bolam J.P., Spillantini M.G., Wade-Martins R. 2015. Impaired intracellular trafficking defines early Parkinson’s disease. Trends Neurosci. 38 (3), 178‒188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schneider L., Zhang J. 2010. Lysosomal function in macromolecular homeostasis and bioenergetics in Parkinson’s disease. Mol. Neurodegener. 5 (14), 1‒13

    Article  CAS  Google Scholar 

  12. Park J.S., Koentjoro B., Klein C., Sue C.M. 2018. Single heterozygous ATP13A2 mutations cause cellular dysfunction associated with Parkinson’s disease. Mov. Disord. 33 (5), 852‒854.

    Article  PubMed  Google Scholar 

  13. Sidransky E., Lopez G. 2012. The link between the GBA gene and parkinsonism. Lancet Neurol. 11 (11), 986‒998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pitcairn C., Wani W.Y., Mazzulli J.R. 2018. Dysregulation of the autophagic-lysosomal pathway in Gaucher and Parkinson’s disease. Neurobiol. Dis. pii: S0969-9961(18)30074-3. https://doi.org/https://doi.org/10.1016/j.nbd.2018.03.008.

  15. Hampshire D.J., Roberts E., Crow Y., Bond J., Mubaidin A., Wriekat A.L., Al-Din A., Woods C.G. 2001. Kufor–Rakeb syndrome, pallido-pyramidal degeneration with supranuclear upgaze paresis and dementia, maps to 1p36. J. Med. Genet. 38 (10), 680‒682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ramirez A., Heimbach A., Gründemann J., Stiller B., Hampshire D., Cid L.P., Goebel I., Mubaidin A.F., Wriekat A.L., Roeper J., Al-Din A., Hillmer A.M., Karsak M., Liss B., Woods C.G., et al. 2006. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38 (10), 1184‒1191.

    Article  CAS  PubMed  Google Scholar 

  17. Di Fonzo A., Chien H., Socal M., Giraudo S., Tassorelli C., Iliceto G., Fabbrini G., Marconi R., Fincati E., Abbruzzese G., Marini P., Squitieri F., Horstink M.W., Montagna P., Libera A.D., et al. 2007. ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology. 68 (19), 1557‒1562.

    Article  CAS  PubMed  Google Scholar 

  18. Emelyanov A., Boukina T., Yakimovskii A., Usenko T., Drosdova A., Zakharchuk A., Andoskin P., Dubina M., Schwarzman A., Pchelina S. 2012. Glucocerebrosidase gene mutations are associated with Parkinson’s disease in Russia. Mov. Disord. 27 (1), 158‒159.

    Article  CAS  PubMed  Google Scholar 

  19. Brockmann, K., Berg. D. 2014. The significance of GBA for Parkinson’s disease. J. Inherit. Metab. Dis. 37 (4), 643-648.

    Article  CAS  PubMed  Google Scholar 

  20. Dandana A., Ben Khelifa S., Chahed H., Miled A., Ferchichi S. 2016. Gaucher Disease: Clinical, biological and therapeutic aspects. Pathobiology. 83 (1), 13‒23.

    Article  PubMed  Google Scholar 

  21. Nagral, A. 2014. Gaucher disease. J Clin Exp Hepatol. 4 (1), 37‒50.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Parenti G., Andria G., Ballabio A. 2015. Lysosomal storage diseases: From pathophysiology to therapy. Annu. Rev. Med. 66, 471‒486.

    Article  CAS  PubMed  Google Scholar 

  23. Kaye E.M., Ullman M.D., Wilson E.R., Barranger J.A. 1986. Type 2 and type 3 Gaucher disease: A morphological and biochemical study. Ann. Neurol. 120 (2), 223‒230.

    Article  Google Scholar 

  24. Henderson L.P., Lin L., Prasad A., Paul C.A., Chang T.Y., Maue R.A. 2000. Embryonic striatal neurons from Niemann–Pick type C mice exhibit defects in cholesterol metabolism and neurotrophin responsiveness. J. Biol. Chem. 275 (26), 20179‒20187.

    Article  CAS  PubMed  Google Scholar 

  25. Josephs K.A., Matsumoto J.Y., Lindor N.M. 2004. Heterozygous Niemann–Pick disease type C presenting with tremor. Neurology. 63 (11), 2189‒2190.

    Article  PubMed  Google Scholar 

  26. Braak H., Ghebremedhin E., Rub U., Bratzke H., Del Tredici K. 2004. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res. 318 (1), 121‒134.

    Article  PubMed  Google Scholar 

  27. Walterfang M., Patenaude B., Abel L.A., Kluenemann H., Bowman E.A., Fahey M.C., Desmond P., Kelso W., Velakoulis D. 2013. Subcortical volumetric reductions in adult Niemann–Pick disease type C: A cross-sectional study. Am. J. Neuroradiol. 34 (7), 1334‒1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tedeschi G., Bonavita S., Barton N.W., Betolino A., Frank J.A., Patronas N.J., Alger J.R., Schiffmann R. 1998. Proton magnetic resonance spectroscopic imaging in the clinical evaluation of patients with Niemann–Pick type C disease. J. Neurol. Neurosurg. Psychiatry. 65 (1), 72‒79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alieva A.K., Zyrin V.S., Rudenok M.M., Kolacheva A.A., Shulskaya M.V., Ugryumov M.V., Slominsky P.A., Shadrina M.I. 2018. Whole-transcriptome analysis of mouse models with MPTP-induced early stages of Parkinson’s disease reveals stage-specific response of transcriptome and a possible role of myelin-linked genes in neurodegeneration. Mol. Neurobiol. 55 (9), 7229‒7241.

    Article  CAS  PubMed  Google Scholar 

  30. Kolacheva A.A., Volina E.V., Ugryumov M.V. 2014. Degeneration of nigrostriatal dopaminergic neurons in an experimental model of the early clinical stage of Parkinson’s disease. Neurochem. J. 31 (3), 184–192.

    Article  CAS  Google Scholar 

  31. Ugrumov M.V., Khaindrava V.G., Kozina E.A., Kucheryanu V.G., Bocharov E.V., Kryzhanovsky G.N., Kudrin V.S., Narkevich V.B., Klodt P.M., Rayevsky K.S., Pronina T.S. 2011. Modeling of presymptomatic and symptomatic stages of parkinsonism in mice. Neuroscience. 181, 175‒188.

    Article  CAS  PubMed  Google Scholar 

  32. Suslov O., Steindler D.A. 2005. PCR inhibition by reverse transcriptase leads to an overestimation of amplification efficiency. Nucleic Acids Res. 33 (20), e181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hettne K.M., Thompson M., van Haagen H.H., van der Horst E., Kaliyaperumal R., Mina E., Tatum Z., Laros J.F., van Mulligen E.M., Schuemie, M., Aten E., Li T.S., Bruskiewich R., Good B.M., Su A.I., et al. 2016. The implicitome: A resource for rationalizing gene-disease associations. PLoS One. 11 (2), e0149621. https://doi.org/https://doi.org/10.1371/journal.pone.0149621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pathway Studio. https://mammalcedfx.pathwaystudio. com/login/form.

  35. Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (–Delta Delta C(T)) method. Methods. 25 (4), 402‒408.

    Article  CAS  PubMed  Google Scholar 

  36. Smeyne R.J., Jackson-Lewis V. 2005. The MPTP model of Parkinson’s disease. Brain Res. Mol. Brain Res. 134 (1), 57‒66.

    Article  CAS  PubMed  Google Scholar 

  37. Przedborski S., Jackson-Lewis V., Djaldetti R., Liberatore G., Vila M., Vukosavic S., Almer G. 2000. The parkinsonian toxin MPTP: Action and mechanism. Restor. Neurol. Neurosci. 16 (2), 135‒142.

    CAS  PubMed  Google Scholar 

  38. Cuervo A.M., Dice J.F. 2000. Unique properties of lamp2a compared to other lamp2 isoforms. J. Cell Sci. 113 (24), 4441‒4450.

    CAS  PubMed  Google Scholar 

  39. Bandyopadhyay U., Kaushik S., Varticovski L., Cuervo A.M. 2008. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol. Cell. Biol. 28 (18), 5747‒5763.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hubert V., Peschel A., Langer B., Groger M., Rees A., Kain R. 2016. LAMP-2 is required for incorporating syntaxin-17 into autophagosomes and for their fusion with lysosomes. Biol. Open. 5 (10), 1516‒1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hua C.T., Hopwood J.J., Carlsson S.R., Harris R.J., Meikle P.J. 1998. Evaluation of the lysosome-associated membrane protein LAMP-2 as a marker for lysosomal storage disorders. Clin. Chem. 44 (10), 2094‒2102.

    CAS  PubMed  Google Scholar 

  42. Alvarez-Erviti L., Rodriguez-Oroz M.C., Cooper J.M., Caballero C., Ferrer I., Obeso J.A., Schapira A.H. 2010. Chaperone-mediated autophagy markers in Parkinson disease brains. Arch. Neurol. 67 (12), 1464‒1472.

    Article  PubMed  Google Scholar 

  43. Murphy K.E. 2015. Lysosomal-associated membrane protein 2 isoforms are differentially affected in early Parkinson’s disease. Mov. Disord. 30 (12), 1639‒1647.

    Article  CAS  PubMed  Google Scholar 

  44. Wu G., Wang X., Feng X., Zhang A., Li J., Gu K., Huang J., Pang S., Dong H., Gao H., Yan B1. 2011. Altered expression of autophagic genes in the peripheral leukocytes of patients with sporadic Parkinson’s disease. Brain Res. 1394, 105‒111.

    Article  CAS  PubMed  Google Scholar 

  45. Pang S., Chen D., Zhang A., Qin X., Yan B. 2012. Genetic analysis of the LAMP-2 gene promoter in patients with sporadic Parkinson’s disease. Neurosci. Lett. 526 (1), 63‒67.

    Article  CAS  PubMed  Google Scholar 

  46. Stricher F., Macri C., Ruff M., Muller S. 2013. HSPA8/HSC70 chaperone protein: Structure, function, and chemical targeting. Autophagy. 9 (12), 1937‒1954.

    Article  CAS  PubMed  Google Scholar 

  47. Fujiwara Y., Furuta A., Kikuchi H., Aizawa S., Hatanak Y., Konya C., Uchida K, Yoshimura A., Tamai Y., Wada K., Kabuta T. 2013. Discovery of a novel type of autophagy targeting RNA. Autophagy. 9 (3), 403‒409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ji M., Lu F., Zhang J., Li H., Cui T., Li Wang X., Tang D., Ji C. 2014. Degradation of AF1Q by chaperone-mediated autophagy. Exp. Cell Res. 327 (1), 48‒56.

    Article  CAS  PubMed  Google Scholar 

  49. Catarino S., Pereira P., Girao H. 2017. Molecular control of chaperone-mediated autophagy. Essays Biochem. 61 (6), 663‒674.

    Article  PubMed  Google Scholar 

  50. Ingemann L., Kirkegaard T. 2014. Lysosomal storage diseases and the heat shock response: Convergences and therapeutic opportunities. J. Lipid Res. 55 (11), 2198‒2210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koga H., Cuervo A.M. 2011. Chaperone-mediated autophagy dysfunction in the pathogenesis of neurodegeneration. Neurobiol. Dis. 43 (1), 29‒37.

    Article  CAS  PubMed  Google Scholar 

  52. Yun S.P., Kim H., Ham S., Kwon S.H., Lee G.H., Shin J.H., Lee S.H., Ko H.S., Lee Y. 2017. VPS35 regulates parkin substrate AIMP2 toxicity by facilitating lysosomal clearance of AIMP2. Cell Death Dis. 8 (4), eCollection 2017.

  53. Zimprich A., Benet-Pages A., Struhal W., Graf E., Eck S.H., Offman M.N., Haubenberger D., Spielberger S., Schulte E.C., Lichtner P., Rossle S.C., Klopp N., Wolf E., Seppi K., Pirker W., et al. 2011. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am. J. Hum. Genet. 89 (1), 168‒175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tang F.L., Liu W., Hu J.X., Erion J.R., Ye J., Mei L., Xiong W.C. 2015. VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function. Cell Rep. 12 (10), 1631‒1643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Struhal W., Presslauer S., Spielberger S., Zimprich A., Auff E., Bruecke T., Poewe W., Ransmayr G., Austrian V.P.S. Investigators Team. 2014. VPS35 Parkinson’s disease phenotype resembles the sporadic disease. J. Neural Transm. (Vienna). 121 (7), 755‒759.

    Article  CAS  Google Scholar 

  56. Tang F.L., Erion J.R., Tian Y., Liu W., Yin D.M., Ye J., Tang B., Mei L., Xiong W.C. 2015. VPS35 in dopamine neurons is required for endosome-to-Golgi retrieval of Lamp2a, a receptor of chaperone-mediated autophagy that is critical for alpha-synuclein degradation and prevention of pathogenesis of Parkinson’s disease. J. Neurosci. 35 (29), 10613‒10628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Miura E., Hasegawa T., Konno M., Suzuki M., Sugeno N., Fujikake N., Geisler S., Tabuchi M., Oshima R., Kikuchi A., Baba T., Wada K., Nagai Y., Takeda A., Aoki M. 2014. VPS35 dysfunction impairs lysosomal degradation of alpha-synuclein and exacerbates neurotoxicity in a Drosophila model of Parkinson’s disease. Neurobiol. Dis. 71, 1‒13.

    Article  CAS  PubMed  Google Scholar 

  58. Kim E., Lee Y., Lee H.J., Kim J.S., Song B.S., Huh J.W., Lee S.R., Kim S.U., Kim S.H., Hong Y., Shim I., Chang K.T. 2010. Implication of mouse Vps26b-Vps29-Vps35 retromer complex in sortilin trafficking. Biochem. Biophys. Res. Commun. 403 (2), 167‒171.

    Article  CAS  PubMed  Google Scholar 

  59. Coutinho M.F., Prata M.J., Alves S. 2012. A shortcut to the lysosome: The mannose-6-phosphate-independent pathway. Mol. Genet. Metab. 107 (3), 257‒266.

    Article  CAS  PubMed  Google Scholar 

  60. Damen E., Krieger E., Nielsen J.E., Eygensteyn J., van Leeuwen J.E. 2006. The human Vps29 retromer component is a metallo-phosphoesterase for a cation-independent mannose 6-phosphate receptor substrate peptide. Biochem. J. 398 (3), 399‒409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Arighi C.N., Hartnell L.M., Aguilar R.C., Haft C.R., Bonifacino J.S. 2004. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J.Cell Biol. 165 (1), 123‒133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Koeberl D.D., Li S., Dai J., Thurberg B.L., Bali D., Kishnani P.S. 2012. Beta2 agonists enhance the efficacy of simultaneous enzyme replacement therapy in murine Pompe disease. Mol. Genet. Metab. 105 (2), 221‒227.

    Article  CAS  PubMed  Google Scholar 

  63. Cardone M., Porto C., Tarallo A., Vicinanza M., Rossi B., Polishchuk E., Donaudy F., Andria G., De Matteis M.A., Parenti G. 2008. Abnormal mannose-6-phosphate receptor trafficking impairs recombinant alpha-glucosidase uptake in Pompe disease fibroblasts. Pathogenetics. 1 (1), 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Weinert S., Jabs S., Hohensee S., Chan W.L., Kornak U., Jentsch T.J. 2014. Transport activity and presence of ClC-7/Ostm1 complex account for different cellular functions. EMBO Rep. 15 (7), 784‒791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gangelhoff T.A., Mungalachetty P.S., Nix J.C., Churchill M.E. 2009. Structural analysis and DNA binding of the HMG domains of the human mitochondrial transcription factor A. Nucleic Acids Res. 37 (10), 3153‒3164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Baixauli F., Acin-Perez R., Villarroya-Beltri C., Mazzeo C., Nunez-Andrade N., Gabande-Rodriguez E., Ledesma M.D., Blazquez A., Martin M.A., Falcon-Perez J.M., Redondo J.M., Enriquez J.A., Mittelbrunn M. 2015. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses. Cell Metab. 22 (3), 485‒498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Alvarez V., Corao A.I., Sanchez-Ferrero E., De Mena L., Alonso-Montes C., Huerta C., Blazquez M., Ribacoba R., Guisasola L.M., Salvador C., Garcia-Castro M., Coto E. 2008. Mitochondrial transcription factor A (TFAM) gene variation in Parkinson’s disease. Neurosci. Lett. 432 (1), 79‒82.

    Article  CAS  PubMed  Google Scholar 

  68. Osellame L.D., Rahim A.A., Hargreaves I.P., Gegg M.E., Richard-Londt A., Brandner S., Waddington S.N., Schapira A.H., Duchen M.R. 2013. Mitochondria and quality control defects in a mouse model of Gaucher disease links to Parkinson’s disease. Cell Metab. 17 (6), 941‒953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nickell J.R., Culver J.P., Janganati V., Zheng G., Dwoskin L.P., Crooks P.A. 2016. Synthesis and in vitro evaluation of water-soluble 1,4-diphenethylpiperazine analogs as novel inhibitors of the vesicular monoamine transporter-2. Bioorg. Med. Chem. Lett. 26 (18), 4441‒4445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Volz T.J., Hanson G.R., Fleckenstein A.E. 2006. Measurement of kinetically resolved vesicular dopamine uptake and efflux using rotating disk electrode voltammetry. J. Neurosci. Meth. 155 (1), 109‒115.

    Article  CAS  Google Scholar 

  71. Cliburn R.A., Dunn A.R., Stout K.A., Hoffman C.A., Lohr K.M., Bernstein A.I., Winokur E.J., Burkett J., Schmitz Y., Caudle W.M., Miller G.W. 2017. Immunochemical localization of vesicular monoamine transporter 2 (VMAT2) in mouse brain. J. Chem. Neuroanat. 8384, 82‒90.

    Article  CAS  Google Scholar 

  72. Poet M., Kornak U., Schweizer M., Zdebik A.A., Scheel O., Hoelter S., Wurst W., Schmitt A., Fuhrmann J.C., Planells-Cases R., Mole S.E., Hubner C.A., Jentsch T.J. 2006. Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6. Proc. Natl. Acad. Sci. U. S. A. 103 (37), 13854‒13859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hu A., Zhao X.T., Tu H., Xiao T., Fu T., Wang Y., Liu Y., Shi X.J., Luo J. 2018. PIP4K2A regulates intracellular cholesterol transport through modulating PI (4,5)P2 homeostasis. J. Lipid Res. 59 (3), 507‒514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lohr K.M., Bernstein A.I., Stout K.A., Dunn A.R., Lazo C.R., Alter S.P., Wang M., Li Y., Fan X., Hess E.J., Yi H., Vecchio L.M., Goldstein D.S., Guillot T.S., Salahpour A., Miller G.W. 2014. Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo. Proc. Natl. Acad. Sci. U. S. A. 111 (27), 9977‒9982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Rudenok.

Additional information

Translated by D. Timchenko

Abbreviations: PD, Parkinson’s disease; GD, Gaucher’s disease; DA, dopamine; DA neurons, dopaminergic neurons; LSD, lysosomal storage disorder; 6h-PSS, model of presymptomatic stage of PD where animals were decapitated in 6 h after the last administration of neurotoxin; 24h-PSS, model of presymptomatic stage of PD where animals were decapitated in 24 h after the last administration of neurotoxin; LPSS, model of late presymtomatic stage of PD; ESS, model of early symptomatic stage of PD; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MPTP models, models of early-stage PD induced by MPTP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudenok, M.M., Alieva, A.K., Nikolaev, M.A. et al. Possible Involvement of Genes Related to Lysosomal Storage Disorders in the Pathogenesis of Parkinson’s Disease. Mol Biol 53, 24–31 (2019). https://doi.org/10.1134/S002689331901014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689331901014X

Keywords:

Navigation