Skip to main content
Log in

Whole-Transcriptome Analysis of Mouse Models with MPTP-Induced Early Stages of Parkinson’s Disease Reveals Stage-Specific Response of Transcriptome and a Possible Role of Myelin-Linked Genes in Neurodegeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is characterized by degeneration of dopaminergic neurons. A whole-transcriptome analysis of the substantia nigra and striatum of an MPTP-induced mouse models of the earliest stages of PD was performed. Functional clustering of differentially represented transcripts revealed processes associated with the functioning of synapses, dendrites, axons, and myelination of neuronal projections. All of these processes occur in both the substantia nigra and striatum, but they are aimed at the functioning of neuron terminals in the striatum. One cluster was identified at the earliest stage modeled, i.e., “neuron projection” in the substantia nigra and “transport” in the striatum, and their number increased at subsequent stages. The number of clusters in the striatum predominates over those in the substantia nigra and there is a pronounced increase in the number of clusters from the modeled early stages to the late stages. These findings indicate that the substantia nigra and striatum have unique patterns of changes at each stage. Considering the clustering of individual processes, it was seen that there is a set of hierarchical clusters that overlap only partially at different stages and in different tissues. The data indicate a consistent involvement of the transcriptome in the pathogenesis of PD and highlight the independent role of various brain structures and individual parts of nerve cells in the formation of a response to the development of neurodegeneration. Decreased myelination of neuronal projections may be associated with the development of PD in the models considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Racette BA, Tabbal SD, Jennings D, Good L, Perlmutter JS, Evanoff B (2005) Prevalence of parkinsonism and relationship to exposure in a large sample of Alabama welders. Neurology 64(2):230–235. https://doi.org/10.1212/01.WNL.0000149511.19487.44

    Article  PubMed  CAS  Google Scholar 

  2. Claveria LE, Duarte J, Sevillano MD, Perez-Sempere A, Cabezas C, Rodriguez F, de Pedro-Cuesta J (2002) Prevalence of Parkinson’s disease in Cantalejo, Spain: a door-to-door survey. Mov Disord 17(2):242–249. https://doi.org/10.1002/mds.10087

    Article  PubMed  Google Scholar 

  3. van de Vijver DA, Roos RA, Jansen PA, Porsius AJ, de Boer A (2001) Estimation of incidence and prevalence of Parkinson’s disease in the elderly using pharmacy records. Pharmacoepidemiol Drug Saf 10(6):549–554. https://doi.org/10.1002/pds.624

    Article  PubMed  Google Scholar 

  4. Chan DK, Cordato D, Karr M, Ong B, Lei H, Liu J, Hung WT (2005) Prevalence of Parkinson’s disease in Sydney. Acta Neurol Scand 111(1):7–11. https://doi.org/10.1111/j.1600-0404.2004.00348.x

    Article  PubMed  CAS  Google Scholar 

  5. Morioka S, Sakata K, Yoshida S, Nakai E, Shiba M, Yoshimura N, Hashimoto T (2002) Incidence of Parkinson disease in Wakayama, Japan. J Epidemiol/Japan Epidemiol Assoc 12(6):403–407. https://doi.org/10.2188/jea.12.403

    Article  Google Scholar 

  6. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20(4):415–455. https://doi.org/10.1016/0022-510X(73)90175-5

    Article  PubMed  CAS  Google Scholar 

  7. Cookson MR, Hardy J, Lewis PA (2008) Genetic neuropathology of Parkinson’s disease. Int J Clin Exp Pathol 1(3):217–231

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Fowler CJ (2007) Update on the neurology of Parkinson’s disease. Neurourol Urodyn 26(1):103–109. https://doi.org/10.1002/nau.20371

    Article  PubMed  Google Scholar 

  9. Hunn BH, Cragg SJ, Bolam JP, Spillantini MG, Wade-Martins R (2015) Impaired intracellular trafficking defines early Parkinson’s disease. Trends Neurosci 38(3):178–188. https://doi.org/10.1016/j.tins.2014.12.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Trinh J, Farrer M (2013) Advances in the genetics of Parkinson disease. Nat Rev Neurol 9(8):445–454. https://doi.org/10.1038/nrneurol.2013.132

    Article  PubMed  CAS  Google Scholar 

  11. Lesage S, Brice A (2012) Role of Mendelian genes in “sporadic” Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S66–S70. https://doi.org/10.1016/S1353-8020(11)70022-0

    Article  PubMed  Google Scholar 

  12. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science (New York, NY) 219(4587):979–980. https://doi.org/10.1126/science.6823561

    Article  CAS  Google Scholar 

  13. German DC, Nelson EL, Liang CL, Speciale SG, Sinton CM, Sonsalla PK (1996) The neurotoxin MPTP causes degeneration of specific nucleus A8, A9 and A10 dopaminergic neurons in the mouse. Neurodegeneration 5(4):299–312. https://doi.org/10.1006/neur.1996.0041

    Article  PubMed  CAS  Google Scholar 

  14. Meredith GE, Totterdell S, Potashkin JA, Surmeier DJ (2008) Modeling PD pathogenesis in mice: advantages of a chronic MPTP protocol. Parkinsonism Relat Disord 14(Suppl 2):S112–S115. https://doi.org/10.1016/j.parkreldis.2008.04.012

    Article  PubMed  PubMed Central  Google Scholar 

  15. Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46(4):598–605. https://doi.org/10.1002/1531-8249(199910)46:4<598::AID-ANA7>3.0.CO;2-F

    Article  PubMed  CAS  Google Scholar 

  16. Smeyne RJ, Jackson-Lewis V (2005) The MPTP model of Parkinson’s disease. Brain Res Mol Brain Res 134(1):57–66. https://doi.org/10.1016/j.molbrainres.2004.09.017

    Article  PubMed  CAS  Google Scholar 

  17. Prediger RD, Aguiar AS Jr, Rojas-Mayorquin AE, Figueiredo CP, Matheus FC, Ginestet L, Chevarin C, Bel ED et al (2010) Single intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/6 mice models early preclinical phase of Parkinson’s disease. Neurotox Res 17(2):114–129. https://doi.org/10.1007/s12640-009-9087-0

    Article  PubMed  CAS  Google Scholar 

  18. Dovero S, Gross C, Bezard E (2016) Unexpected toxicity of very low dose MPTP in mice: a clue to the etiology of Parkinson’s disease? Synapse (New York, NY) 70(2):49–51. https://doi.org/10.1002/syn.21875

    Article  CAS  Google Scholar 

  19. Ugrumov MV, Khaindrava VG, Kozina EA, Kucheryanu VG, Bocharov EV, Kryzhanovsky GN, Kudrin VS, Narkevich VB et al (2011) Modeling of presymptomatic and symptomatic stages of parkinsonism in mice. Neuroscience 181:175–188. https://doi.org/10.1016/j.neuroscience.2011.03.007

    Article  PubMed  CAS  Google Scholar 

  20. Kolacheva AA, Kozina EA, Volina EV, Ugryumov MV (2014) Time course of degeneration of dopaminergic neurons and respective compensatory processes in the nigrostriatal system in mice. Doklady Biol Sci 456(1):160–164. https://doi.org/10.1134/s0012496614030041

    Article  CAS  Google Scholar 

  21. Alieva AK, Filatova EV, Kolacheva AA, Rudenok MM, Slominsky PA, Ugrumov MV, Shadrina MI (2016) Transcriptome profile changes in mice with MPTP-induced early stages of Parkinson’s disease. Mol Neurobiol 54(9):6775–6784. https://doi.org/10.1007/s12035-016-0190-y

    Article  PubMed  CAS  Google Scholar 

  22. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) The guide for the care and use of laboratory animals, 8th edn. National Academies Press, Washington (DC)

    Google Scholar 

  23. Team RC (2015) R: a language and environment for statistical computing [Internet]. Vienna: R Foundation for Statistical Computing 2014. http://www.R-project.org/. Accessed 09 Aug 2017

  24. Wickham H, Francois R (2015) dplyr: a grammar of data manipulation. http://CRAN.R-project.org/package=dplyr. Accessed 09 Aug 1 2017

  25. Dowle M, Short T, Lianoglou S, Saporta R, Srinivasan A, Antonyan E (2014) data. table: extension of data. frame. http://CRAN.R-project.org/package=data.table. Accessed 09 Aug 2017

  26. Chen H (2016) VennDiagram: generate high-resolution Venn and Euler plots. R package version 1.6. 17. http://CRAN.R-project.org/package=VennDiagram. Accessed 09 Aug 2017

  27. Rasmussen M, Karypis G (2004) gCLUTO: an interactive clustering, visualization, and analysis system. CSE/UMN Technical Rep 04(021):10

    Google Scholar 

  28. Karypis G (2006) gCluto Graphical Clustering Toolkit http://glaros.dtc.umn.edu/gkhome/cluto/gcluto/overview. Accessed 09 Aug 2017

  29. Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics (Oxford, England) 18(1):207–208. https://doi.org/10.1093/bioinformatics/18.1.207

    Article  CAS  Google Scholar 

  30. Genesis (2002) http://genome.tugraz.at/genesisclient/genesisclient_description.shtml. Accessed 09 Aug 2017

  31. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. https://doi.org/10.1038/nprot.2008.211

    Article  PubMed  CAS  Google Scholar 

  32. Huang da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13. https://doi.org/10.1093/nar/gkn923

    Article  PubMed  CAS  Google Scholar 

  33. DAVID Bioinformatics Resources database (2003) https://david.ncifcrf.gov/summary.jsp. Accessed 09 Aug 2017

  34. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452. https://doi.org/10.1093/nar/gku1003

    Article  PubMed  CAS  Google Scholar 

  35. STRING database (2003) http://string-db.org. Accessed 17 Mar 2017

  36. Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD (2017) PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res 45(D1):D183–d189. https://doi.org/10.1093/nar/gkw1138

    Article  PubMed  CAS  Google Scholar 

  37. PANTHER Classification system http://pantherdb.org. Accessed 17 Mar 2017

  38. Hettne KM, Thompson M, van Haagen HH, van der Horst E, Kaliyaperumal R, Mina E, Tatum Z, Laros JF et al (2016) The implicitome: a resource for rationalizing gene-disease associations. PLoS One 11(2):e0149621. https://doi.org/10.1371/journal.pone.0149621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Pathway Studio https://mammalcedfx.pathwaystudio.com. Accessed 09 Aug 2017

  40. Benjamini Y, Heller R (2008) Screening for partial conjunction hypotheses. Biometrics 64(4):1215–1222. https://doi.org/10.1111/j.1541-0420.2007.00984.x

    Article  PubMed  Google Scholar 

  41. Gene Ontology database (the framework for the model of biology) (1999) http://www.geneontology.org/. Accessed 09 Aug 2017

  42. Gerlach M, Riederer P (1996) Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in man. J Neural Transm 103(8–9):987–1041. https://doi.org/10.1007/BF01291788

    Article  PubMed  CAS  Google Scholar 

  43. Przedborski S, Jackson-Lewis V, Djaldetti R, Liberatore G, Vila M, Vukosavic S, Almer G (2000) The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci 16(2):135–142

    PubMed  CAS  Google Scholar 

  44. Antony PM, Diederich NJ, Kruger R, Balling R (2013) The hallmarks of Parkinson’s disease. FEBS J 280(23):5981–5993. https://doi.org/10.1111/febs.12335

    Article  PubMed  CAS  Google Scholar 

  45. Gandhi S, Muqit MM, Stanyer L et al (2006) PINK1 protein in normal human brain and Parkinson’s disease. Brain 129(7):1720–1731. https://doi.org/10.1093/brain/awl114

    Article  PubMed  CAS  Google Scholar 

  46. Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12(1):9–14. https://doi.org/10.1038/nrm3028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ding WX, Yin XM (2012) Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 393(7):547–564. https://doi.org/10.1515/hsz-2012-0119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Braak H, Del Tredici K (2004) Poor and protracted myelination as a contributory factor to neurodegenerative disorders. Neurobiol Aging 25(1):19–23. https://doi.org/10.1016/j.neurobiolaging.2003.04.001

    Article  PubMed  CAS  Google Scholar 

  49. Braak H, Del Tredici K (2009) Neuroanatomy and pathology of sporadic Parkinson’s disease. Adv Anat Embryol Cell Biol 201:1–119

    PubMed  Google Scholar 

  50. Redeker V, Pemberton S, Bienvenut W, Bousset L, Melki R (2012) Identification of protein interfaces between alpha-synuclein, the principal component of Lewy bodies in Parkinson disease, and the molecular chaperones human Hsc70 and the yeast Ssa1p. J Biol Chem 287:32630–32639. https://doi.org/10.1074/jbc.M112.387530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Papagiannakis N, Xilouri M, Koros C, Stamelou M, Antonelou R, Maniati M, Papadimitriou D, Moraitou M et al (2015) Lysosomal alterations in peripheral blood mononuclear cells of Parkinson’s disease patients. Mov Disord 30(13):1830–1834. https://doi.org/10.1002/mds.26433

    Article  PubMed  CAS  Google Scholar 

  52. Nickell JR, Culver JP, Janganati V, Zheng G, Dwoskin LP, Crooks PA (2016) Synthesis and in vitro evaluation of water-soluble 1,4-diphenethylpiperazine analogs as novel inhibitors of the vesicular monoamine transporter-2. Bioorg Med Chem Lett 26(18):4441–4445. https://doi.org/10.1016/j.bmcl.2016.08.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Volz TJ, Hanson GR, Fleckenstein AE (2006) Measurement of kinetically resolved vesicular dopamine uptake and efflux using rotating disk electrode voltammetry. J Neurosci Methods 155(1):109–115. https://doi.org/10.1016/j.jneumeth.2006.01.002

    Article  PubMed  CAS  Google Scholar 

  54. Lohr KM, Bernstein AI, Stout KA, Dunn AR, Lazo CR, Alter SP, Wang M, Li Y et al (2014) Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo. Proc Natl Acad Sci U S A 111(27):9977–9982. https://doi.org/10.1073/pnas.1402134111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wang ZQ, Grigoriadis AE, Mohle-Steinlein U, Wagner EF (1991) A novel target cell for c-fos-induced oncogenesis: development of chondrogenic tumours in embryonic stem cell chimeras. EMBO J 10(9):2437–2450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wang JD, Cao YL, Li Q, Yang YP, Jin M, Chen D, Wang F, Wang GH et al (2015) A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation. Autophagy 11(11):2057–2073. https://doi.org/10.1080/15548627.2015.1100930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grants no. 16-15-00238 and 17-75-10119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.Kh. Alieva.

Ethics declarations

Experiments with laboratory animals were performed in accordance with The Guide for the Care and Use of Laboratory Animals. The study was approved by the Ethics Committee of the Institute of Molecular Genetics of Russian Academy of Sciences.

Competing Interests

The authors declare that there is no conflict of interest.

Electronic supplementary material

ESM 1

(R 24 kb)

ESM 2

(R 5 kb)

ESM 3

(R 1 kb)

ESM 4

(R 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alieva, A., Zyrin, V., Rudenok, M. et al. Whole-Transcriptome Analysis of Mouse Models with MPTP-Induced Early Stages of Parkinson’s Disease Reveals Stage-Specific Response of Transcriptome and a Possible Role of Myelin-Linked Genes in Neurodegeneration. Mol Neurobiol 55, 7229–7241 (2018). https://doi.org/10.1007/s12035-018-0907-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0907-1

Keywords

Navigation