Skip to main content
Log in

Functionally Significant Amino Acid Motifs of Heat Shock Proteins: Structural and Bioinformatics Analyses of Hsp60/Hsp10 in Five Classes of Chordata

  • BIOINFORMATICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The Hsp60/Hsp10 chaperonin system is one of the most studied systems of cell emergency responses to stresses associated with changes in environmental conditions. In this regard, we have performed a bioinformatics analysis of 164 amino acid sequences of Hsp60 and 125 amino acid sequences of Hsp10 in five classes of chordata. This enabled uncovering the relationship between the identity of the amino acid composition of Hsp60/Hsp10 and the evolutionary distance between classes of chordata. In the course of the study of the chaperonin crystal structure, potentially significant amino acid motifs responsible for the oligomerization of Hsp60 and Hsp10 monomers and the association/dissociation of the Hsp60 and Hsp10 hetero-dimer have been identified. In addition, we have established that Hsp60 and Hsp10 can form amyloid fibrils due to structural features through the alternative using of the oligomerization sites of monomers as well as association/dissociation sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Corrao S., Anzalone R., Lo Iacono M., Corsello T., Di Stefano A., D’Anna S.E., Balbi B., Carone M., Sala A., Corona D., Timperio A.M., Zolla L., Farina F., Conway de Macario E., et al. 2014. Hsp10 nuclear localization and changes in lung cells response to cigarette smoke suggest novel roles for this chaperonin. Open Biol. 4 (10), pii 140125. doi 10.1098/rsob.140125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Khamis I., Chan D.W., Shirriff C.S., Campbell J.H., Heikkila J.J. 2016. Expression and localization of the Xenopus laevis small heat shock protein, HSPB6 (HSP20), in A6 kidney epithelial cells. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 201, 12–21.

    Article  CAS  Google Scholar 

  3. Soltys B.J., Gupta R.S. 1996. Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Exp. Cell Res. 222 (1), 16–27.

    Article  PubMed  CAS  Google Scholar 

  4. Baringou S., Rouault J.-D., Koken M., Hardivillier Y., Hurtado L., Leignel V. 2016. Diversity of cytosolic HSP70 heat shock protein from decapods and their phylogenetic placement within Arthropoda. Gene. 591 (1), 97–107. doi 10.1016/j.gene.2016.06.061

    Article  PubMed  CAS  Google Scholar 

  5. Ebrahimi M., Mohammadi P., Daryadel A., Baharvand H. 2010. Assessment of heat shock protein (HSP60, HSP72, HSP90, and HSC70) expression in cultured limbal stem cells following air lifting. Mol. Vis. 16, 1680–1688.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Moon A., Bacchini P., Bertoni F., Olvi L.G., Santini-Arawo E., Kim Y.W., Park Y.-K. 2010). Expression of heat shock proteins in osteosarcomas. Pathology (Phila.). 42 (5), 421–425.

    CAS  Google Scholar 

  7. Cheng Y.F., Sun J.R., Chen H.B., Abdelnasir A., Tang S., Kemper N., Hartung J., Bao E.D. 2014. Association of Hsp60 expression with damage to rat myocardial cells exposed to heat stress in vivo and in vitro. Genet. Mol. Res. GMR. 13 (4), 9371–9381.

    Article  PubMed  CAS  Google Scholar 

  8. Seveso D., Montano S., Strona G., Orlandi I., Galli P., Vai M. 2016. Hsp60 expression profiles in the reef-building coral Seriatopora caliendrum subjected to heat and cold shock regimes. Mar. Environ. Res. 119, 1–11.

    Article  PubMed  CAS  Google Scholar 

  9. Donovan M.R., Marr M.T. 2016. dFOXO activates large and small heat shock protein genes in response to oxidative stress to maintain proteostasis in Drosophila. J. Biol. Chem. 291 (36), 19 042–19 050. doi 10.1074/ jbc.M116.723049

    Article  CAS  Google Scholar 

  10. Singh M.P., Ravi Ram K., Mishra M., Shrivastava M., Saxena D.K., Chowdhuri D.K. 2010. Effects of co-exposure of benzene, toluene and xylene to Drosophila melanogaster: Alteration in hsp70, hsp60, hsp83, hsp26, ROS generation and oxidative stress markers. Chemosphere. 79 (5), 577–587.

    Article  PubMed  CAS  Google Scholar 

  11. Azarnia Tehran D., Pirazzini M., Leka O., Mattarei A., Lista F., Binz T., Rossetto O., Montecucco C. 2016. Hsp90 is involved in the entry of clostridial neurotoxins into the cytosol of nerve terminals. Cell. Microbiol. 19 (2). doi 10.1111/cmi.12647

  12. Inda C., Bolaender A., Wang T., Gandu S. R., Koren Iii J. 2016. Stressing out Hsp90 in neurotoxic proteinopathies. Curr. Top. Med. Chem. 16 (25), 2829–2838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zhao P., Zhang K., Guo G., Sun X., Chai H., Zhang W., Xing M. 2016. Heat shock protein alteration in the gastrointestinal tract tissues of chickens exposed to arsenic trioxide. Biol. Trace Elem. Res. 170 (1), 224–236.

    Article  PubMed  CAS  Google Scholar 

  14. Gammazza A.M., Bavisotto C.C., Barone R., de Macario E.C., Macario A.J.L. 2016. Alzheimer’s disease and molecular chaperones: Current knowledge and the future of chaperonotherapy. Curr. Pharm. Des. 22 (26), 4040–4049.

    Article  CAS  Google Scholar 

  15. Zhao C., Li H., Zhao X.-J., Liu Z.-X., Zhou P., Liu Y., Feng M.-J. 2016. Heat shock protein 60 affects behavioral improvement in a rat model of Parkinson’s disease grafted with human umbilical cord mesenchymal stem cell-derived dopaminergic-like neurons. Neurochem. Res. 41 (6), 1238–1249.

    Article  PubMed  CAS  Google Scholar 

  16. Huckriede A., Heikema A., Sjollema K., Briones P., Agsteribbe E. 1995. Morphology of the mitochondria in heat shock protein 60 deficient fibroblasts from mitochondrial myopathy patients. Effects of stress conditions. Virchows Arch. Int. J. Pathol. 427 (2), 159–165.

    Article  CAS  Google Scholar 

  17. Sugimoto M., Furuoka H., Sugimoto Y. 2003. Deletion of one of the duplicated Hsp70 genes causes hereditary myopathy of diaphragmatic muscles in Holstein-Friesian cattle. Anim. Genet. 34 (3), 191–197.

    Article  PubMed  CAS  Google Scholar 

  18. Nisemblat S., Yaniv O., Parnas A., Frolow F., Azem A. 2015. Crystal structure of the human mitochondrial chaperonin symmetrical football complex. Proc. Natl. Acad. Sci. U. S. A. 112 (19), 6044–6049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Okamoto T., Ishida R., Yamamoto H., Tanabe-Ishida M., Haga A., Takahashi H., Takahashi K., Goto D., Grave E., Itoh H. 2015. Functional structure and physiological functions of mammalian wild-type HSP60. Arch. Biochem. Biophys. 586, 10–19.

    Article  PubMed  CAS  Google Scholar 

  20. Hayer-Hartl M., Bracher A., Hartl F.U. 2016. The GroEL-GroES chaperonin machine: A nano-cage for protein folding. Trends Biochem. Sci. 41 (1), 62–76.

    Article  PubMed  CAS  Google Scholar 

  21. Karlin S., Brocchieri L. 2000. Heat shock protein 60 sequence comparisons: Duplications, lateral transfer, and mitochondrial evolution. Proc. Natl. Acad. Sci. U. S. A. 97 (21), 11 348–11 353.

    Article  Google Scholar 

  22. Sameshima T., Ueno T., Iizuka R., Ishii N., Terada N., Okabe K., Funatsu T. 2008. Football- and bullet-shaped GroEL-GroES complexes coexist during the reaction cycle. J. Biol. Chem. 283 (35), 23 765–23 773.

    Article  CAS  Google Scholar 

  23. Mandal K., Foteinos G., Jahangiri M., Xu Q. 2005. Role of antiheat shock protein 60 autoantibodies in atherosclerosis. Lupus. 14 (9), 742–746.

    Article  PubMed  CAS  Google Scholar 

  24. Grundtman C., Kreutmayer S.B., Almanzar G., Wick M.C., Wick G. 2011. Heat shock protein 60 and immune inflammatory responses in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31 (5), 960–968.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Pfister G., Stroh C.M., Perschinka H., Kind M., Knoflach M., Hinterdorfer P., Wick G. 2005. Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J. Cell. Sci. 118 (8), 1587–1594.

    Article  PubMed  CAS  Google Scholar 

  26. Zhu H., Fang X., Zhang D., Wu W., Shao M., Wang L., Gu J. 2016. Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen. Apoptosis Int. J. Program. Cell Death. 21 (1), 96–109.

    Article  CAS  Google Scholar 

  27. Fruchart J.-C., Nierman M.C., Stroes E.S.G., Kastelein J.J.P., Duriez P. 2004. New risk factors for atherosclerosis and patient risk assessment. Circulation. 109 (23, Suppl. 1), III-15–III-19.

    Article  Google Scholar 

  28. Lanter B.B., Sauer K., Davies D.G. 2014. Bacteria present in carotid arterial plaques are found as biofilm deposits which may contribute to enhanced risk of plaque rupture. mBio. 5 (3), e01206-14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ameriso S.F., Fridman E.A., Leiguarda R.C., Sevlever G.E. 2001. Detection of Helicobacter pylori in human carotid atherosclerotic plaques. Stroke. 32 (2), 385–391.

    Article  PubMed  CAS  Google Scholar 

  30. Izadi M., Fazel M., Sharubandi S.H., Saadat S.H., Farahani M.M., Nasseri M.H., Dabiri H., SafiAryan R., Esfahani A.A., Ahmadi A., Jonaidi Jafari N., Ranjbar R., Jamali-Moghaddam S.-R., Kazemi-Saleh D., Kalantar-Motamed M.H., Taheri S. 2012. Helicobacter species in the atherosclerotic plaques of patients with coronary artery disease. Cardiovasc. Pathol. 21 (4), 307–311.

    Article  PubMed  Google Scholar 

  31. Belland R.J., Ouellette S.P., Gieffers J., Byrne G.I. 2004. Chlamydia pneumoniae and atherosclerosis. Cell. Microbiol. 6 (2), 117–127.

    Article  PubMed  CAS  Google Scholar 

  32. Farsak B., Yildirir A., Akyön Y., Pinar A., Öç M., Böke E., Kes S., Tokgözoğlu L. 2000. Detection of Chlamydia pneumoniae and Helicobacter pylori DNA in human atherosclerotic plaques by PCR. J. Clin. Microbiol. 38 (12), 4408–4411.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Perschinka H., Wellenzohn B., Parson W., Zee R. van der, Willeit J., Kiechl S., Wick G. 2007. Identification of atherosclerosis-associated conformational heat shock protein 60 epitopes by phage display and structural alignment. Atherosclerosis. 194 (1), 79–87.

    Article  PubMed  Google Scholar 

  34. Perschinka H., Mayr M., Millonig G., Mayerl C., Zee R. van der, Morrison S.G., Morrison R.P., Xu Q., Wick G. 2003. Cross-reactive B-cell epitopes of microbial and human heat shock protein 60/65 in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 23 (6), 1060–1065.

    Article  PubMed  CAS  Google Scholar 

  35. Wick G., Jakic B., Buszko M., Wick M.C., Grundtman C. 2014. The role of heat shock proteins in atherosclerosis. Nat. Rev. Cardiol. 11 (9), 516–529.

    Article  PubMed  CAS  Google Scholar 

  36. Afek A., George J., Gilburd B., Rauova L., Goldberg I., Kopolovic J., Harats D., Shoenfeld Y. 2000. Immunization of low-density lipoprotein receptor deficient (LDL-RD) mice with heat shock protein 65 (HSP-65) promotes early atherosclerosis. J. Autoimmun. 14 (2), 115–121.

    Article  PubMed  CAS  Google Scholar 

  37. Xu Q., Dietrich H., Steiner H.J., Gown A.M., Schoel B., Mikuz G., Kaufmann S.H., Wick G. 1992. Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65. Arterioscler. Thromb. J. Vasc. Biol. 12 (7), 789–799.

    Article  CAS  Google Scholar 

  38. Mangione M.R., Vilasi S., Marino C., Librizzi F., Canale C., Spigolon D., Bucchieri F., Fucarino A., Passantino R., Cappello F., Bulone D., San Biagio P.L. 2016. Hsp60, amateur chaperone in amyloid-beta fibrillogenesis. Biochim. Biophys. Acta. 1860 (11, Pt. A), 2474–2483. doi 10.1016/j.bbagen.2016.07.019

  39. Ojha B., Fukui N., Hongo K., Mizobata T., Kawata Y. 2016. Suppression of amyloid fibrils using the GroEL apical domain. Sci. Rep. 6, 31 041.

    Article  CAS  Google Scholar 

  40. Padmadas N., Panda P.K., Durairaj S. 2016. Binding patterns associated Aß-HSP60 p458 conjugate to HLA-DR-DRB allele of human in Alzheimer’s disease: An in silico approach. Interdiscip. Sci. Comput. Life Sci. 10 (1), 93–104. doi 10.1007/s12539-016-0170-y

    Article  CAS  Google Scholar 

  41. Sievers F., Higgins D.G. 2014. Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol. Biol. 1079, 105–116.

    Article  PubMed  CAS  Google Scholar 

  42. Manning J.R., Jefferson E.R., Barton G.J. 2008. The contrasting properties of conservation and correlated phylogeny in protein functional residue prediction. BMC Bioinformatics. 9, 51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kumar S., Stecher G., Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33 (7), 1870–1874.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Jones D.T., Taylor W.R., Thornton J.M. 1992. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8 (3), 275–282.

    PubMed  CAS  Google Scholar 

  45. Galzitskaya O.V., Garbuzynskiy S.O., Lobanov M.Y. 2006. FoldUnfold: Web server for the prediction of disordered regions in protein chain. Bioinformatics. 22 (23), 2948–2949.

    Article  PubMed  CAS  Google Scholar 

  46. Galzitskaya O.V., Garbuzinskiy S.O., Lobanov M.Yu. 2006. Prediction of natively unfolded regions in protein chain. Mol. Biol. (Moscow). 40 (2), 298‒304.

    Article  CAS  Google Scholar 

  47. Lobanov M.Y., Galzitskaya O.V. 2011. The Ising model for prediction of disordered residues from protein sequence alone. Phys. Biol. 8 (3), 035004.

    Article  PubMed  CAS  Google Scholar 

  48. Lobanov M.Y., Sokolovskiy I.V., Galzitskaya O.V. 2013. Is unstruct: Prediction of the residue status to be ordered or disordered in the protein chain by a method based on the Ising model. J. Biomol. Struct. Dyn. 31 (10), 1034–1043.

    Article  PubMed  CAS  Google Scholar 

  49. Galzitskaya O.V., Garbuzynskiy S.O., Lobanov M.Y. 2006. Prediction of amyloidogenic and disordered regions in protein chains. PLoS Comput. Biol. 2 (12), e177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Garbuzynskiy S.O., Lobanov M.Y., Galzitskaya O.V. 2010. FoldAmyloid: A method of prediction of amyloidogenic regions from protein sequence. Bioinformatics. 26 (3), 326–332.

    Article  PubMed  CAS  Google Scholar 

  51. Klochkov V.I. 2013. Metrologiya, standartizatsiya i sertifikatsiya (Metrology, Standardization, and Certification). Moscow: VLADOS.

    Google Scholar 

  52. Brocchieri L., Karlin S. 2000. Conservation among HSP60 sequences in relation to structure, function, and evolution. Protein Sci. 9 (3), 476–486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Drozdetskiy A., Cole C., Procter J., Barton G.J. 2015. JPred4: A protein secondary structure prediction server. Nucleic Acids Res. 43 (W1), 389–394. doi 10.1093/nar/gkv332

    Article  CAS  Google Scholar 

  54. Skvortsov V.S., Alekseytchuk N.N., Khudyakov D.V., Reyes I.V.R. 2015. pIPredict: A computer tool for prediction of isoelectric points of peptides and proteins. Biochemistry (Moscow), Suppl. Ser. B: Biomed. Chem. 9 (3), 296–303.

    Google Scholar 

  55. Fukasawa Y., Tsuji J., Fu S.-C., Tomii K., Horton P., Imai K. 2015. MitoFates: Improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol. Cell. Proteomics MCP. 14 (4), 1113–1126.

    Article  PubMed  CAS  Google Scholar 

  56. Fenton W.A., Kashi Y., Furtak K., Horwich A.L. 1994. Residues in chaperonin GroEL required for polypeptide binding and release. Nature. 371 (6498), 614–619.

    Article  PubMed  CAS  Google Scholar 

  57. Singh B., Patel H.V., Ridley R.G., Freeman K.B., Gupta R.S. 1990. Mitochondrial import of the human chaperonin (HSP60) protein. Biochem. Biophys. Res. Commun. 169 (2), 391–396.

    Article  PubMed  CAS  Google Scholar 

  58. Voos W., Röttgers K. 2002). Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim. Biophys. Acta—Mol. Cell Res. 1592 (1), 51–62.

  59. Dyson H.J., Wright P.E., Scheraga H.A. 2006. The role of hydrophobic interactions in initiation and propagation of protein folding. Proc. Natl. Acad. Sci. U. S. A. 103 (35), 13 057–13 061.

    Article  CAS  Google Scholar 

  60. Ryabova N.A., Marchenkov V.V., Marchenkova S.Y., Kotova N.V., Semisotnov G.V. 2013. Molecular chaperone GroEL/ES: Unfolding and refolding processes. Biochemistry (Moscow). 78 (13), 1405–1414.

    PubMed  CAS  Google Scholar 

  61. Boisvert D.C., Wang J., Otwinowski Z., Horwich A.L., Sigler P.B. 1996. The 2.4 Å crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S. Nat. Struct. Biol. 3 (2), 170–177.

    Article  PubMed  CAS  Google Scholar 

  62. Seale J.W., Horowitz P.M. 1995. The C-terminal sequence of the chaperonin GroES Is required for oligomerization. J. Biol. Chem. 270 (51), 30 268–30 270.

    Article  Google Scholar 

  63. Goh Y.C., Yap C.T., Huang B.H., Cronshaw A.D., Leung B.P., Lai P.B.S., Hart S.P., Dransfield I., Ross J.A. 2011. Heat-shock protein 60 translocates to the surface of apoptotic cells and differentiated megakaryocytes and stimulates phagocytosis. Cell. Mol. Life Sci. 68 (9), 1581–1592.

    Article  PubMed  CAS  Google Scholar 

  64. Hayoun D., Kapp T., Edri-Brami M., Ventura T., Cohen M., Avidan A., Lichtenstein R.G. 2012. HSP60 is transported through the secretory pathway of 3‑MCA-induced fibrosarcoma tumour cells and undergoes N-glycosylation. FEBS J. 279 (12), 2083–2095.

    Article  PubMed  CAS  Google Scholar 

  65. Blom N., Sicheritz-Pontén T., Gupta R., Gammeltoft S., Brunak S. 2004. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics. 4 (6), 1633–1649.

    Article  PubMed  CAS  Google Scholar 

  66. Chiti F., Dobson C.M. 2009. Amyloid formation by globular proteins under native conditions. Nat. Chem. Biol. 5 (1), 15–22.

    Article  PubMed  CAS  Google Scholar 

  67. Rambaran R.N., Serpell L.C. 2008. Amyloid fibrils. Prion. 2 (3), 112–117.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chen J., Yagi H., Sormanni P., Vendruscolo M., Makabe K., Nakamura T., Goto Y., Kuwajima K. 2012. Fibrillogenic propensity of the GroEL apical domain: A Janus-faced minichaperone. FEBS Lett. 586 (8), 1120–1127.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to all reviewers for their comments on this paper. The work was supported by the Russian Science Foundation, project no. 18-14-00321.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Galzitskaya.

Additional information

Translated by E. Puchkov

1Abbreviations: Hsp, heat shock protein; MMP, matrix metalloproteinase; Icp55, intermediate cleaving peptidase 55, cleaving the intermediates of posttranslational protein modification; TOM20, translocase of the mitochondrial outer membrane; PKA, protein kinase A; PKG, protein kinase G.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhomirova, T.S., Galzitskaya, O.V. Functionally Significant Amino Acid Motifs of Heat Shock Proteins: Structural and Bioinformatics Analyses of Hsp60/Hsp10 in Five Classes of Chordata. Mol Biol 52, 761–778 (2018). https://doi.org/10.1134/S0026893318050138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893318050138

Keywords:

Navigation