Skip to main content
Log in

Main regulatory element (MRE) of the Danio rerio α/β-globin gene domain exerts enhancer activity toward the promoters of the embryonic-larval and adult globin genes

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

In warm-blooded vertebrates, the α- and β-globin genes are organized in domains of different types and are regulated in different fashion. In cold-blooded vertebrates and, in particular, the tropical fish Danio rerio, the α- and β-globin genes form two gene clusters. A major D. rerio globin gene cluster is in chromosome 3 and includes the α- and β-globin genes of embryonic-larval and adult types. The region upstream of the cluster contains c16orf35, harbors the main regulatory element (MRE) of the α-globin gene domain in warm-blooded vertebrates. In this study, transient transfection of erythroid cells with genetic constructs containing a reporter gene under the control of potential regulatory elements of the domain was performed to characterize the promoters of the embryonic-larval and adult α- and β-globin genes of the major cluster. Also, in the 5th intron of c16orf35 in Danio rerio was detected a functional analog of the warm-blooded vertebrate MRE. This enhancer stimulated activity of the promoters of both adult and embryonic-larval α- and β-globin genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MRE:

major regulatory element

LCR:

locus control region

DMEM:

Dulbecco’s modified Eagle medium

References

  1. Bernal J.D., Fankuchen I., Perutz M.F. 1938. X-ray study of chymotrypsin and hemoglobin. Nature. 141, 523–524.

    Article  CAS  Google Scholar 

  2. Coates M.L. 1975. Hemoglobin function in the vertebrates: An evolutionary model. J. Mol. Evol. 6 (4): 285–307.

    Article  CAS  PubMed  Google Scholar 

  3. Razin S.V., Farrell C.M., Recillas-Targa F. 2003. Genomic domains and regulatory elements operating at the domain level. Int. Rev. Cytol. 226, 63–125.

    Article  CAS  PubMed  Google Scholar 

  4. Grosveld F., van Assendelft G.B., Greaves D.R., Kollias G. 1987. Positionindependent, high-level expression of the human beta-globin gene in transgenic mice. Cell. 51, 975–985.

    Article  CAS  PubMed  Google Scholar 

  5. Flint J., Tufarelli C., Peden J., Clark K., Daniels R., Hardison R., Miller W., Philipsen S., Tan-Un K. C., McMorrow T., Flampton J., Alter B., Frischauf A.M., Higgs D. 2001. Comparative genome analysis delimits a chromosomal domain and identifies key regulatory elements in the a-globin cluster. Hum. Mol. Genet. 4, 371–382.

    Article  Google Scholar 

  6. Craddock C.F., Vyas P., Sharpe J.A., Ayyub H., Wood W.G., Higgs D.R. 1995. Contrasting effects of alpha and beta globin regulatory elements on chromatin structure may be related to their different chromosomal environments. EMBO J. 14, 1718–1726.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tufarelli C., Hardison R., Miller W., Hughes J., Clark K., Ventress N., Frischauf A.M., Higgs D.R. 2004. Comparative analysis of the alpha-like globin clusters in mouse, rat, and human chromosomes indicates a mechanism underlying breaks in conserved synteny. Genome Res. 14, 623–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Klochkov D., Gavrilov A., Vassetzky Y., Razin S. 2009. Early replication timing of the chicken a-globin gene domain correlates with its open chromatin state in cells of different lineages. Genomics. 93, 481–486.

    Article  CAS  PubMed  Google Scholar 

  9. Tufarelli C., Flint J., Peden J., Clark K., Daniels R., Hardison R., Miller W., Philipsen S., Tan-Un K.C., McMorrow T., Flampton J., Alter B., Frischauf A.M., Higgs D. 2001. Comparative genome analysis delimits a chromosomal domain and identifies key regulatory elements in the a-globin cluster. Hum. Mol. Genet. 4, 371–382.

    Google Scholar 

  10. Jarman A.P., Wood W.G., Sharpe J.A, Gourdon G., Ayyub H., Higgs D.R. 1991. Characterization of the major regulatory element upstream of the human alpha-globin gene cluster. Mol. Cell. Biol. 11, 4679–4689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharpe J., Chan-Thomas P., Lida J., Ayyub H., Wood W., Higgs D. 1992. Analysis of the human alpha globin upstream regulatory element (HS-40) in transgenic mice. EMBO J. 11, 4565–4572.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Anguita E., Johnson C.A., Wood W.G., Turner B.M., Higgs D.R. 2001. Identification of a conserved erythroid specific domain of histone acetylation across the alpha-globin gene cluster. Proc. Natl. Acad. Sci. U. S. A. 98, 12114–12119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen H., Lowrey C.H., Stamatoyannopoulos G. 1997. Analysis of enhancer function of the HS-40 core sequence of the human alpha-globin cluster. Nucleic Acids Res. 25, 2917–2922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maruyama K., Ishikawa Y., Yasumasu S., Iuchi I. 2007. Globin gene enhancer activity of a DNase-I hypersensitive site-40 homolog in medaka, Oryzias latipes. Zool. Sci. 24, 997–1004.

    Article  CAS  PubMed  Google Scholar 

  15. Higgs D.R., Vernimmen D., Wood B. 2008. Longrange regulation of a-globin gene expression. Adv. Genet. 61, 143–173.

    CAS  PubMed  Google Scholar 

  16. McMorrow T., Wagner A., Deryckere F., Gannon F. 1996. Structural organization and sequence analysis of the globin locus in Atlantic salmon. DNA Cell. Biol. 15 (5): 407–414.

    Article  CAS  PubMed  Google Scholar 

  17. Opazo J.C., Butts G.T., Nery M.F., Storz J.F., Hoffmann F.G. 2013. Whole-genome duplication and the functional diversification of teleost fish hemoglobins. Mol. Biol. Evol. 30 (1): 140–153.

    Article  CAS  PubMed  Google Scholar 

  18. Postlethwait J.H., Yan Y.L., Gates M.A., Horne S., Amores A., Brownlie A., Donovan A., Egan E.S., Force A., Gong Z., Goutel C., Fritz A., Kelsh R., Knapik E., Liao E., et al. 1998. Vertebrate genome evolution and the zebrafish gene map. Nat. Genet. 18 (4): 345–359.

    Article  CAS  PubMed  Google Scholar 

  19. Jared J.G., Nelson H., Trompouki E., deJong J.O., Anthony D.B., Janelle S.L., Zhiying J., Peter J.S., Weaver M., Sandstrom R., Stamatoyannopoulos J.A, Zhou Y., Zon L.I. 2012. Zebrafish globin switching occurs in two developmental stages and is controlled by the LCR. Dev. Biol. 366, 185–194.

    Article  Google Scholar 

  20. Beug H., Doderlein G., Freudenstein C., Graf T. 1982. Erythroblast cell lines transformed by a temperature sensitive mutant of avian erythroblastosis virus: A model system to study erythroid differentiation in vitro. J. Cell. Physiol. Suppl. 1, 195–207.

    Article  CAS  PubMed  Google Scholar 

  21. Brownlie A. 2003. Characterization of embryonic globin genes of the zebrafish. Dev. Biol. 255, 48–61.

    Article  CAS  PubMed  Google Scholar 

  22. Tiedke J., Gerlach F., Mitz S.A., Hankeln T., Burmester T. 2011. Ontogeny of globin expression in zebrafish (Danio rerio). J. Comp. Physiol B. 181 (8): 1011–1021.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Kovina.

Additional information

Original Russian Text © A.P. Kovina, N.V. Petrova, S.V. Razin, O.V. Yarovaia, 2016, published in Molekulyarnaya Biologiya, 2016, Vol. 50, No. 6, pp. 1020–1029.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovina, A.P., Petrova, N.V., Razin, S.V. et al. Main regulatory element (MRE) of the Danio rerio α/β-globin gene domain exerts enhancer activity toward the promoters of the embryonic-larval and adult globin genes. Mol Biol 50, 900–908 (2016). https://doi.org/10.1134/S002689331606011X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689331606011X

Keywords

Navigation