Skip to main content
Log in

Homogeneous and heterogeneous in vitro 3D models of melanoma

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The growth of malignant tumors occurs in 3D environments and depends on the presence of a stromal component, which performs critical functions of tumor-cell protection and growth support. Therefore, the development and analysis of tumor models in 3D cell cultures in vitro, including coculture systems, hold significant interest. In this study, the results of 3D culturing of two human melanoma cell lines using the hanging drop method with and without human mesenchymal stem cells (MSCs) have been presented. The melanoma lines have been shown to behave differently in 3D cultures. In particular, the Mel Cher melanoma cells are capable of the formation of uniform spheroids within 24 h, whereas the MeWo cells failed to form spheroids even after 2 days of culture under similar conditions. However, in both cases, the coculturing of the melanoma cells with MSCs resulted in the formation of compact 3D cell spheroids. The visualization of MeWo cells and MSCs in mixed spheroids using fluorescent dyes revealed a certain clustering of the melanoma cells. The observed properties of the melanoma cells in homogeneous and heterogeneous spheroids may be used in the complex analysis of antimelanoma chemotherapy drugs and the estimation of their therapeutic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MSC:

human mesenchymal stem cell of adipose tissue

DMEM:

Dulbecco’s modified Eagle Medium

References

  1. Santini M.T., Rainaldi G., Indovina P.L. 2000. Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids. Crit. Rev. Oncol. Hematol. 36, 75–87.

    Article  CAS  PubMed  Google Scholar 

  2. Yamada K.M., Cukierman E. 2007. Modeling tissue morphogenesis and cancer in 3D. Cell. 130, 601–610.

    Article  CAS  PubMed  Google Scholar 

  3. Kim J.B., Stein R., O’Hare M.J. 2004. Three-dimensional in vitro tissue culture models of breast cancer: A review. Breast Cancer Res. Treat. 85, 281–291.

    Article  PubMed  Google Scholar 

  4. Pastrana E., Silva-Vargas V., Doetsch F. 2011. Eyes wide open: A critical review of sphere-formation as an assay for stem cells. Cell Stem Cell. 8, 486–498.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Holtfreter J. 1944. A study of the mechanics of gastrulation. J. Exp. Zool. 95, 171–212.

    Article  Google Scholar 

  6. Moscona A., Moscona H. 1952. The dissociation and aggregation of cells from organ rudiments of the early chick embryo. J. Anat. 86, 287–301.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Costchel O., Fadei L., Badea E. 1969. Tumor cell suspension culture on non adhesive substratum. Z. Krebsforsch. 72, 24–31.

    Article  Google Scholar 

  8. Sutherland R.M., McCredie J.A., Inch W.R. 1971. Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J. Natl. Cancer Inst. 46, 113–120.

    CAS  PubMed  Google Scholar 

  9. Kunz-Schughart L.A., Kreutz M., Knuechel R. 1998. Multicellular spheroids: A three-dimensional in vitro culture system to study tumor biology. Int. J. Exp. Pathol. 78, 1–23.

    Google Scholar 

  10. Khomyak A.G. and Sidorenko M.V. 2001. A model of spheroid formation and its applications in oncology. Eksp. Onkol. 23, 236–241.

    Google Scholar 

  11. Flach E.H., Rebecca V.W., Herlyn M., Smalley K.S., Anderson A.R. 2011. Fibroblasts contribute to melanoma tumor growth and drug resistance. Mol. Pharm. 8, 2039–2049.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kucerova L., Matuskova M., Hlubinova K., Altanerova V., Altaner C. 2010. Tumor cell behaviour modulation by mesenchymal stromal cells. Mol. Cancer. 9, 129–144.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Go Y., Chintala S.K., Mohanam S., Gokaslan Z., Venkaiah B., Bjerkvig R., Oka K., Nicolson G.L., Sawaya R., Rao J.S. 1997. Inhibition of in vivo tumorigenicity and invasiveness of a human glioblastoma cell line transfected with antisense uPAR vectors. Clin. Exp. Metastasis. 15, 440–446.

    Article  CAS  PubMed  Google Scholar 

  14. Ivanov D.P., Parker T.L., Walker D., Alexander C., Ashford M.B., Gellert P.R., Garnett M.C. 2015. In vitro co-culture model of medulloblastoma and human neural stem cells for drug delivery assessment. J. Biotechnol. 205, 3–13.

    Article  CAS  PubMed  Google Scholar 

  15. Vartanian A., Stepanova E., Grigorieva I., Solomko E., Baryshnikov A., Lichinitser M. 2011. VEGFR1 and PKCa signaling control melanoma vasculogenic mimicry in a VEGFR2 kinase-independent manner. Melanoma Res. 21, 91–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. F. Kandarakov.

Additional information

Original Russian Text © O.F. Kandarakov, M.V. Kalashnikova, A.A. Vartanian, A.V. Belyavsky, 2015, published in Molekulyarnaya Biologiya, 2015, Vol. 49, No. 6, pp. 998–1001.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandarakov, O.F., Kalashnikova, M.V., Vartanian, A.A. et al. Homogeneous and heterogeneous in vitro 3D models of melanoma. Mol Biol 49, 895–898 (2015). https://doi.org/10.1134/S0026893315050106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893315050106

Keywords

Navigation