Skip to main content
Log in

Effect of mutations and modifications of amino acid residues on zinc-induced interaction of the metal-binding domain of β-amyloid with DNA

  • Structural and Functional Analysis of Biopolymers and Biopolymer Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Interaction of intranuclear β-amyloid with DNA is considered to be a plausible mechanism of Alzheimer’s disease pathogenesis. The interaction of single- and double-stranded DNA with synthetic peptides was analyzed using surface plasmon resonance. The peptides represent the metal-binding domain of β-amyloid (amino acids 1–16) and its variants with chemical modifications and point substitutions of amino acid residues which are associated with enhanced neurotoxicity of β-amyloid in cell tests. It has been shown that the presence of zinc ions is necessary for the interaction of the peptides with DNA in solution. H6R substitution has remarkably reduced the ability of domain 1–16 to bind DNA. This is in accordance with the supposition that the coordination of a zinc ion by amino acid residues His6, Glu11, His13, and His14 of the β-amyloid metal-binding domain results in the occurrence of an anion-binding site responsible for the interaction of the domain with DNA. Zinc-induced dimerization and oligomerization of domain 1–16 associated with phosphorylation of Ser8 and the presence of unblocked amino- and carboxy-terminal groups have resulted in a decrease of peptide concentrations required for detection of the peptide-DNA interaction. The presence of multiple anion-binding sites on the dimers and oligomers is responsible for the enhancement of the peptide-DNA interaction. A substitution of the negatively charged residue Asp7 for the neutral residue Asn in close proximity to the anion-binding site of the domain 1–16 of Aβ facilitates the electrostatic interaction between this site and phosphates of a polynucleotide chain, which enhances zinc-induced binding to DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goedert M., Spillantini M.G. 2006. A century of Alzheimer’s disease. Science. 314, 777–781.

    Article  CAS  PubMed  Google Scholar 

  2. D’Andrea M.R., Nagele R.G., Wang H.Y., Lee D.H. 2002. Consistent immunohistochemical detection of intracellular beta-amyloid42 in pyramidal neurons of Alzheimer’s disease entorhinal cortex. Neurosci. Lett. 333, 163–166.

    Article  PubMed  Google Scholar 

  3. Grundke-Iqbal I., Iqbal K., George L., Tung Y.C., Kim K.S., Wisniewski H.M. 1989. Amyloid protein and neurofibrillary tangles coexist in the same neuron in Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 86, 2853–2857.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Takahashi R.H., Milner T.A., Li F., Nam E.E., Edgar M.A., Yamaguchi H., Beal M.F., Xu H., Greengard P., Gouras G.K. 2002. Intraneuronal Alzheimer Abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am. J. Pathol. 161, 1869–1879.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gouras G.K., Tsai J., Naslund J., Vincent B., Edgar M., Checler F., Greenfield J.P., Haroutunian V., Buxbaum J.D., Xu H., Greengard P., Relkin N.R. 2000. Intraneuronal Abeta42 accumulation in human brain. Am. J. Pathol. 156, 15–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Wirths O., Bayer TA. 2012. Intraneuronal Aβ accumulation and neurodegeneration: Lessons from transgenic models. Life Sci. 91, 1148–1152.

    Article  CAS  PubMed  Google Scholar 

  7. Wirths O., Multhaup G., Bayer T.A. 2004. A modified beta-amyloid hypothesis: Intraneuronal accumulation of the beta-amyloid peptide-the first step of a fatal cascade. J. Neurochem. 91, 513–520.

    Article  CAS  PubMed  Google Scholar 

  8. Li M., Chen L., Lee D.H., Yu L.C., Zhang Y. 2007. The role of intracellular amyloid β in Alzheimer’s disease. Prog. Neurobiol. 83, 131–139.

    Article  CAS  PubMed  Google Scholar 

  9. Gouras G.K., Almeida C.G., Takahashi R.H. 2005. Intraneuronal Abeta accumulation and origin of plaques in Alzheimer’s disease. Neurobiol. Aging. 26, 1235–1244.

    Article  CAS  PubMed  Google Scholar 

  10. Penke B., Toth A.M., Foldi I., Szucs M., Janaky T. 2012. Intraneuronal β-amyloid and its interactions with proteins and subcellular organelles. Electrophoresis. 33, 3608–3616.

    Article  CAS  PubMed  Google Scholar 

  11. Johnstone E.M., Babbey L.E., Stephenson D., Paul D.C., Santerre R.F., Clemens J.A., Williams D.C., Little S.P. 1996. Nuclear and cytoplasmic localization of the betaamyloid peptide (1–43) in transfected 293 cells. Biochem. Biophys. Res. Commun. 27, 710–718.

    Article  Google Scholar 

  12. Buckig A., Tikkanen R., Herzog V., Schmitz A. 2002. Cytosolic and nuclear aggregation of the amyloid betapeptide following its expression in the endoplasmic reticulum. Histochem. Cell. Biol. 118, 353–360.

    Article  PubMed  Google Scholar 

  13. Ohyagi Y., Asahara H., Chui D.H., Tsuruta Y., Sakae N., Miyoshi K., Yamada T., Kikuchi H., Taniwaki T., Murai H., Ikezoe K., Furuya H., Kawarabayashi T., Shoji M., Checler F., Iwaki T., Makifuchi T., Takeda K., Kira J., Tabira T. 2005. Intracellular Abeta42 activates p53 promoter: A pathway to neurodegeneration in Alzheimer’s disease. FASEB J. 19, 255–257.

    CAS  PubMed  Google Scholar 

  14. Bailey J.A., Maloney B., Ge Y.W., Lahiri D.K. 2011. Functional activity of the novel Alzheimer’s amyloid β-peptide interacting domain (AβID) in the APP and BACE1 promoter sequences and implications in activating apoptotic genes and in amyloidogenesis. Gene. 488, 13–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cardinale A., Racaniello M., Saladini S., De Chiara G., Mollinari C., de Stefano M.C., Pocchiari M., Garaci E., Merlo D. 2012. Sublethal doses of β-amyloid peptide abrogate DNA-dependent protein kinase activity. J. Biol. Chem. 287, 2618–2631.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Jimenez J.S. 2010. Protein-DNA interaction at the origin of neurological diseases: A hypothesis. J. Alzheimer’s Dis. 22, 375–391.

    CAS  Google Scholar 

  17. Yu H., Ren J., Qu X. 2007. Time-dependent DNA condensation induced by amyloid beta-peptide. Biophys. J. 92, 185–191.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hegde M.L., Anitha S., Latha K.S., Mustak M.S., Stein R., Ravid R., Rao K.S. 2004. First evidence for helical transitions in supercoiled DNA by amyloid beta peptide (1–42) and aluminum: A new insight in understanding Alzheimer’s disease. J. Mol. Neurosci. 22, 19–31.

    Article  PubMed  Google Scholar 

  19. Maloney B., Lahiri D.K. 2011. The Alzheimer’s amyloid β-peptide (Aβ) binds a specific DNA Aβ-interacting domain (AβID) in the APP, BACE1, and APOE promoters in a sequence-specific manner: Characterizing a new regulatory motif. Gene. 488, 1–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Geng J., Zhao C., Ren J., Qu X. 2010. Alzheimer’s disease amyloid beta converting left-handed Z-DNA back to right-handed B-form. Chem. Commun. 46, 7187–7189.

    Article  CAS  Google Scholar 

  21. Camero S., Ayuso J.M., Barrantes A., Benítez M.J., Jimenez J.S. 2013. Specific binding of DNA to aggregated forms of Alzheimer’s disease amyloid peptides. Int. J. Biol. Macromol. 55, 201–206.

    Article  CAS  PubMed  Google Scholar 

  22. Lahiri D.K., Maloney B. 2010. Beyond the signaling effect role of amyloid-β42 on the processing of APP, and its clinical implications. Exp. Neurol. 225, 51–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Faller P. 2009. Copper and zinc binding to amyloidbeta: Coordination, dynamics, aggregation, reactivity and metal-ion transfer. ChemBioChem. 10, 2837–2845.

    Article  CAS  PubMed  Google Scholar 

  24. Khmeleva S.A., Mezentsev Y.V., Kozin S.A., Tsvetkov P.O., Ivanov A.S., Bodoev N.V., Makarov A.A., Radko S.P. 2013. Zinc-induced interaction of the metal-binding domain of amyloid-β peptide with DNA. J. Alzheimer’s Dis. 36, 633–636.

    CAS  Google Scholar 

  25. Ono K., Condron M.M., Teplow D.B. 2010. Effects of the English (H6R) and Tottori (D7N) familial Alzheimer disease mutations on amyloid beta-protein assembly and toxicity. J. Biol. Chem. 30, 23186–23197.

    Article  Google Scholar 

  26. Kumar S., Rezaei-Ghaleh N., Terwel D., Thal D.R., Richard M., Hoch M., Mc Donald J.M., Wüllner U., Glebov K., Heneka M.T., Walsh D.M., Zweckstetter M., Walter J. 2011. Extracellular phosphorylation of the amyloid β-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer’s disease. EMBO J. 30, 2255–2265.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Zirah S., Kozin S.A., Mazur A.K., Blond A., Cheminant M., Ségalas-Milazzo I., Debey P., Rebuffat S. 2006. Structural changes of region 1–16 of the Alzheimer disease amyloid beta-peptide upon zinc binding and in vitro aging. J. Biol. Chem. 27, 2151–2161.

    Article  Google Scholar 

  28. Tsvetkov P.O., Kulikova A.A., Golovin A.V., Tkachev Y.V., Archakov A.I., Kozin S.A., Makarov A.A. 2010. Minimal Zn2+ binding site of amyloid-β. Biophys. J. 99, 84–86.

    Article  Google Scholar 

  29. McNutt M., Mullins L.S., Raushel F.M., Pace C.N. 1990. Contribution of histidine residues to the conformational stability of ribonuclease T1 and mutant Glu-58-Ala. Biochemistry. 29, 7572–7576.

    Article  CAS  PubMed  Google Scholar 

  30. Kozin S.A., Kulikova A.A., Istrate A.N., Tsvetkov P.O., Zhokhov S.S., Mesentsev Y.V., Ivanov A.S., Polshakov V.I., Makarov A.A. 2015. The English (H6R) familial Alzheimer’s disease mutation facilitates zinc-induced dimerization of the amyloid-β metal-binding domain. Metallomics. 70, 422–425.

    Article  Google Scholar 

  31. Kozin S.A., Zirah S., Rebuffat S., Hoa G.H., Debey P. 2001. Zinc binding to Alzheimer’s Abeta(1–16) peptide results in stable soluble complex. Biochem. Biophys. Res. Commun. 285, 959–964.

    Article  CAS  PubMed  Google Scholar 

  32. Ali F.E., Separovic F., Barrow C.J., Yao S., Barnham K.J. 2006. Copper and zinc mediated oligomerisation of Aβ peptides. Int. J. Pept. Res. Ther. 12, 153–164.

    Article  CAS  Google Scholar 

  33. Kulikova A.A., Tsvetkov P.O., Indeykina M.I., Popov I.A., Zhokhov S.S., Golovin A.V., Polshakov V.I., Kozin S.A., Nudler E., Makarov A.A. 2014. Phosphorylation of Ser8 promotes zinc-induced dimerization of the amyloid-β metal-binding domain. Mol. Biosyst. 10, 2590–2596.

    Article  CAS  PubMed  Google Scholar 

  34. Colvin R.A., Bush A.I., Volitakis I., Fontaine C.P., Thomas D., Kikuchi K., Holmes W.R. 2008. Insights into Zn2+ homeostasis in neurons from experimental and modeling studies. Am. J. Physiol. Cell Physiol. 294, 726–742.

    Article  Google Scholar 

  35. Alies B., Hureau C., Faller P. 2013. The role of metal ions in amyloid formation: General principles from model peptides. Metallomics. 5, 183–192.

    Article  CAS  PubMed  Google Scholar 

  36. Tougu V., Karafin A., Palumaa P. 2008. Binding of zinc(II) and copper(II) to the full-length Alzheimer’s amyloid-β peptide. J. Neurochem. 104, 1249–1259.

    Article  CAS  PubMed  Google Scholar 

  37. Tsvetkov F.O., Makarov A.A., Archakov A.I., Kozin S.A. 2009. Effect of isomerization of aspartate-7 on the binding of copper(II) ion by the β-amyloid peptide. Biophysics (Moscow). 54 (2), 131–134..

    Article  Google Scholar 

  38. Jiang D., Zhang L., Grant G.P., Dudzik C.G., Chen S., Patel S., Hao Y., Millhauser G.L., Zhou F. 2013. Elevated copper binding strength of amyloid-β aggregates enables their copper sequestration from albumin: A pathway to accumulation of copper in senile plaques. Biochemistry. 52, 547–556.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Radko.

Additional information

Original Russian Text © S.A. Khmeleva, Y.V. Mezentsev, S.A. Kozin, V.A. Mitkevich, A.E. Medvedev, A.S. Ivanov, N.V. Bodoev, A.A. Makarov, S.P. Radko, 2015, published in Molekulyarnaya Biologiya, 2015, Vol. 49, No. 3, pp. 507–514.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khmeleva, S.A., Mezentsev, Y.V., Kozin, S.A. et al. Effect of mutations and modifications of amino acid residues on zinc-induced interaction of the metal-binding domain of β-amyloid with DNA. Mol Biol 49, 450–456 (2015). https://doi.org/10.1134/S0026893315020053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893315020053

Keywords

Navigation