Skip to main content
Log in

The role of syndecan-2 in amyloid plaque formation

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Friedrich Engels once defined life as “the mode of existence of protein bodies.” This notion has become widely acknowledged; however, upon closer inspection, not only is the mere existence of protein bodies important, but also their changes over time. What are the characteristics of aging? Apparently, the characteristics include changes in the functioning of protein molecules, in particular uncontrolled protein aggregation, which may occur in any organ and may involve any protein. Although their clinical presentations are different, diseases associated with pathological accumulation of aggregated proteins are considered as a general group termed amyloidosis. Depending on the protein aggregation site, amyloidosis may present as a variety of pathologic conditions ranging from neurodegenerative disorders and malignant tumors to arthritis and tuberculosis. There is no doubt that the understanding of the mechanisms that underlie the transformation of absolutely normal functioning proteins into pathological aggregated forms will help to develop novel medications that could prevent protein aggregation and, thus, contribute to the prolongation of life. This review discusses the functions of syndecan-2, its structural organization, and its role in the formation of amyloid plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernfield M., Kokenyesi R., Kato M., Hinkes M.T., Spring J., Gallo R.L., Lose E.J. 1992. Biology of the syndecans: A family of transmembrane heparan sulfate proteoglycans. Annu. Rev. Cell Biol. 8, 365–393.

    Article  CAS  PubMed  Google Scholar 

  2. Choi Y., Chung H., Jung H., Couchman J.R., Oh E.-S. 2011. Syndecans as cell surface receptors: Unique structure equates with functional diversity. Matrix Biol. J. Int. Soc. Matrix Biol. 30, 93–99.

    Article  CAS  Google Scholar 

  3. Sarrazin S., Lamanna W.C., Esko J.D. 2011. Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol. 3, a004952–a004952.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Manon-Jensen T., Itoh Y., Couchman J.R. 2010. Proteoglycans in health and disease. The multiple roles of syndecan shedding: Syndecan shedding at the cell surface. FEBS J. 277, 3876–3889.

    Article  CAS  PubMed  Google Scholar 

  5. Chen L., Couchman J.R., Smith J., Woods A. 2002. Molecular characterization of chicken syndecan-2 proteoglycan. Biochem. J. 366, 481–490.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Hsueh Y.P., Yang F.C., Kharazia V., Naisbitt S., Cohen A.R., Weinberg R.J., Sheng M. 1998. Direct interaction of CASK/LIN-2 and syndecanheparan sulfate proteoglycan and their overlapping distribution in neuronal synapses. J. Cell Biol. 142, 139–151.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Cohen A.R., Woods D.F., Marfatia S.M., Walther Z., Chishti A.H., Anderson J.M., Wood D.F. 1998. Human CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cells. J. Cell Biol. 142, 129–138.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Rapraeger A.C., Ott V.L. 1998. Molecular interactions of the syndecan core proteins. Curr. Opin. Cell Biol. 10, 620–628.

    Article  CAS  PubMed  Google Scholar 

  9. Granés F., Urena J.M., Rocamora N., Vilaró S. 2000. Ezrin links syndecan-2 to the cytoskeleton. J. Cell Sci. 113(7), 1267–1276.

    PubMed  Google Scholar 

  10. Villena J. 2003. Syndecan-2 expression enhances adhesion and proliferation of stably transfected Swiss 3T3 cells. Cell Biol. Int. 27, 1005–1010.

    Article  CAS  PubMed  Google Scholar 

  11. Chen L., Klass C., Woods A. 2004. Syndecan-2 regulates transforming growth factor-beta signaling. J. Biol. Chem. 279, 15715–15718.

    Article  CAS  PubMed  Google Scholar 

  12. Chen E., Hermanson S., Ekker S.C. 2004. Syndecan-2 is essential for angiogenic sprouting during zebrafish development. Blood. 103, 1710–1719.

    Article  CAS  PubMed  Google Scholar 

  13. Lin Y.-L., Lei Y.-T., Hong C.-J., Hsueh Y.-P. 2007. Syndecan-2 induces filopodia and dendritic spine formation via the neurofibromin-PKA-Ena/VASP pathway. J. Cell Biol. 177, 829–841.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Ethell I.M., Irie F., Kalo M.S., Couchman J.R., Pasquale E.B., Yamaguchi Y. 2001. EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron. 31, 1001–1013.

    Article  CAS  PubMed  Google Scholar 

  15. Barrett P.J., Song Y., Van Horn W.D., Hustedt E.J., Schafer J.M., Hadziselimovic A., Beel A.J., Sanders C.R. 2012. The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science. 336, 1168–1171.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Dews I.C., MacKenzie K.R. 2007. Transmembrane domains of the syndecan family of growth factor coreceptors display a hierarchy of homotypic and heterotypic interactions. Proc. Natl. Acad. Sci. U. S. A. 104, 20782–20787.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Chen C.-Y., Lin C.-W., Chang C.-Y., Jiang S.-T., Hsueh Y.-P. 2011. Sarm1, a negative regulator of innate immunity, interacts with syndecan-2 and regulates neuronal morphology. J. Cell Biol. 193, 769–784.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Park H., Kim Y., Lim Y., Han I., Oh E.-S. 2002. Syndecan-2 mediates adhesion and proliferation of colon carcinoma cells. J. Biol. Chem. 277, 29730–29736.

    Article  CAS  PubMed  Google Scholar 

  19. Manich G., Mercader C., del Valle J., Duran-Vilaregut J., Camins A., Pallàs M., Vilaplana J., Pelegrí C. 2011. Characterization of amyloid-β granules in the hippocampus of SAMP8 mice. J. Alzheimers Dis. 25, 535–546.

    CAS  PubMed  Google Scholar 

  20. Lobanov M.Y., Sokolovskiy I.V., Galzitskaya O.V. 2013. IsUnstruct: Prediction of theresidue status to be ordered or disordered in the protein chain by a method based on the Ising model. J. Biomol. Struct. Dyn. 31, 1034–1043.

    Article  CAS  PubMed  Google Scholar 

  21. Leonova E.I., Galzitskaya O.V. 2014. Cell communication using intrinsically disordered proteins: What can syndecans say? J. Biomol. Struct. Dyn. 1–14 (Epub ahead of print).

    Google Scholar 

  22. Leonova E.I., Galzitskaya O.V. 2013. Comparative characteristics of the structure and function for animal syndecan-1 proteins. Mol. Biol. (Moscow). 47, 446–452.

    Article  CAS  Google Scholar 

  23. Dyson H.J., Wright P.E. 2005. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208.

    Article  CAS  PubMed  Google Scholar 

  24. Tompa P. 2012. Intrinsically disordered proteins: A 10-year recap. Trends Biochem. Sci. 37, 509–516.

    Article  CAS  PubMed  Google Scholar 

  25. Biere A.L., Ostaszewski B., Stimson E.R., Hyman B.T., Maggio J.E., Selkoe D.J. 1996. Amyloid beta-peptide is transported on lipoproteins and albumin in human plasma. J. Biol. Chem. 271, 32916–32922.

    Article  CAS  PubMed  Google Scholar 

  26. Ladu M.J., Reardon C., van Eldik L., Fagan A.M., Bu G., Holtzman D., Getz G.S. 2000. Lipoproteins in the central nervous system. Ann. N.Y. Acad. Sci. 903, 167–175.

    Article  CAS  PubMed  Google Scholar 

  27. Kudinov A.R., Kudinova N.V., Kezlia E.V., Kozyrev K.M., Medvedev A.E., Berezov T.T. 2012. Compensatory mechanisms to heal neuroplasticity impairment under Alzheiemer’s disease neurodegeneration: 1. The role of amyloid beta and its precursor protein. Biomed. Khim. 58, 385–399.

    CAS  PubMed  Google Scholar 

  28. Koudinov A.R., Berezov T.T., Kumar A., Koudinova N.V. 1998. Alzheimer’s amyloid beta interaction with normal human plasma high density lipoprotein: Association with apolipoprotein and lipids. Clin. Chim. Acta Int. J. Clin. Chem. 270, 75–84.

    Article  CAS  Google Scholar 

  29. Koudinov A.R., Berezov T.T., Koudinova N.V. 2001. The levels of soluble amyloid beta in different high density lipoprotein subfractions distinguish Alzheimer’s and normal aging cerebrospinal fluid: Implication for brain cholesterol pathology? Neurosci. Lett. 314, 115–118.

    Article  CAS  PubMed  Google Scholar 

  30. Games D., Adams D., Alessandrini R., Barbour R., Berthelette P., Blackwell C., Carr T., Clemens J., Donaldson T., Gillespie F. 1995. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature. 373, 523–527.

    Article  CAS  PubMed  Google Scholar 

  31. Snow A.D., Willmer J., Kisilevsky R. 1987. A close ultrastructural relationship between sulfated proteoglycans and AA amyloid fibrils. Lab. Investig. J. Tech. Methods Pathol. 57, 687–698.

    CAS  Google Scholar 

  32. Snow A.D., Mar H., Nochlin D., Kimata K., Kato M., Suzuki S., Hassell J., Wight T.N. 1988. The presence of heparan sulfate proteoglycans in the neuritic plaques and congophilicangiopathy in Alzheimer’s disease. Am. J. Pathol. 133, 456–463.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Narindrasorasak S., Lowery D., Gonzalez-DeWhitt P., Poorman R.A., Greenberg B., Kisilevsky R. 1991. High affinity interactions between the Alzheimer’s betaamyloid precursor proteins and the basement membrane form of heparan sulfate proteoglycan. J. Biol. Chem. 266, 12878–12883.

    CAS  PubMed  Google Scholar 

  34. Li J.-P., Galvis M.L.E., Gong F., Zhang X., Zcharia E., Metzger S., Vlodavsky I., Kisilevsky R., Lindahl U. 2005. In vivo fragmentation of heparan sulfate by heparanase overexpression renders mice resistant to amyloid protein A amyloidosis. Proc. Natl. Acad. Sci. U. S. A. 102, 6473–6477.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Castillo G.M., Lukito W., Wight T.N., Snow A.D. 1999. The sulfate moieties of glycosaminoglycans are critical for the enhancement of beta-amyloid protein fibril formation. J. Neurochem. 72, 1681–1687.

    Article  CAS  PubMed  Google Scholar 

  36. Wall J.S., Richey T., Stuckey A., Donnell R., Macy S., Martin E.B., Williams A., Higuchi K., Kennel S.J. 2011. In vivo molecular imaging of peripheral amyloidosis using heparin-binding peptides. Proc. Natl. Acad. Sci. U. S. A. 108, E586–E594.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Galzitskaya.

Additional information

Original Russian Text © E.I. Leonova, O.V. Galzitskaya, 2015, published in Molekulyarnaya Biologiya, 2015, Vol. 49, No. 1, pp. 89–98.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonova, E.I., Galzitskaya, O.V. The role of syndecan-2 in amyloid plaque formation. Mol Biol 49, 77–85 (2015). https://doi.org/10.1134/S0026893315010082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893315010082

Keywords

Navigation