Skip to main content

Protein Aggregation, Related Pathologies, and Aging

  • Chapter
  • First Online:
Models, Molecules and Mechanisms in Biogerontology

Abstract

Self-assembly of protein molecules into higher order structures is a fundamental process in biology, which has a direct relevance to many metabolic processes in life. Though self-assembly of various structural proteins such as collagens and laminins is vital to both structural and functional properties of several tissue components and scaffolds, self-assembly of soluble proteins and peptides leading to formation of cross-β-structured amyloid aggregates, on the contrary, has been linked to many lethal diseases. Since proteins are considered as important biomacromolecules which are directly or indirectly involved in almost every metabolic process, the occurrence of protein aggregation is predicted to influence the normal physiology of living beings. The onset of protein aggregation into amyloid fibrils has been linked to more than ~45 pathologies, including a series of neurodegenerative disorders such as Aβ-linked Alzheimer’s disease, huntingtin-linked Huntington’s disease, and α-synuclein-linked Parkinson’s disease. These neurodegenerative diseases are known as progressive disorders in which the lethality rises with the increase in the age of the individuals. Hence, the question of what influence the alternations in the age-linked metabolic processes have on the process of protein aggregation becomes very significant. In this chapter, we have attempted to discuss selected research reports on fundamental understanding of the process of protein aggregation and its biological relevance, particularly exploring the vital link between aging and amyloid-related pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ouzounis CA, Coulson RM, Enright AJ, Kunin V, Pereira-Leal JB. Classification schemes for protein structure and function. Nat Rev Genet. 2003;4:508–19.

    Article  CAS  PubMed  Google Scholar 

  2. Berg JM, Tymoczko JL, Stryer L. Protein Structure and Function, Biochemistry. New York: W.H. Freeman and Company; 2002.

    Google Scholar 

  3. Aguzzi A, O’Connor T. Protein aggregation diseases: Pathogenicity and therapeutic perspectives, Nature Reviews. Drug Discov. 2010;9:237–48.

    Article  CAS  Google Scholar 

  4. Gusella JF, Mac Donald ME. Molecular genetics: Unmasking polyglutamine triggers in neurodegenerative disease. Nat Rev. Neurosci. 2000;1:109–15.

    Article  CAS  PubMed  Google Scholar 

  5. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide, Nature Reviews. Mol Cell Biol. 2007;8:101–12.

    CAS  Google Scholar 

  6. Bemporad F, Chiti F. Protein misfolded oligomers: Experimental approaches, mechanism of formation, and structure-toxicity relationships. Chem Biol. 2012;19:315–27.

    Article  CAS  PubMed  Google Scholar 

  7. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 2003;300:486–9.

    Article  CAS  PubMed  Google Scholar 

  8. Humphreys DT, Carver JA, Easterbrook-Smith SB, Wilson MR. Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem. 1999;274:6875–81.

    Article  CAS  PubMed  Google Scholar 

  9. Sakahira H, Breuer P, Hayer-Hartl MK, Hartl FU. Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc Natl Acad Sci U S A. 2002;99(Suppl 4):16412–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science. 2002;295:1852–8.

    Article  CAS  PubMed  Google Scholar 

  11. Frydman J. Folding of newly translated proteins in vivo: The role of molecular chaperones. Annu Rev Biochem. 2001;70:603–47.

    Article  CAS  PubMed  Google Scholar 

  12. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem. 2013;82:323–55.

    Article  CAS  PubMed  Google Scholar 

  13. Kakkar V, Meister-Broekema M, Minoia M, Carra S, Kampinga HH. Barcoding heat shock proteins to human diseases: Looking beyond the heat shock response. Dis Model Mech. 2014;7:421–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morimoto RI. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 2008;22:1427–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Glover JR, Lindquist S. Hsp104, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins. Cell. 1998;94:73–82.

    Article  CAS  PubMed  Google Scholar 

  16. Shorter J. The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PloS One. 2011;6:e26319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao X, Carroni M, Nussbaum-Krammer C, Mogk A, Nillegoda NB, Szlachcic A, Guilbride DL, Saibil HR, Mayer MP, Bukau B. Human Hsp70 disaggregase reverses Parkinson’s-linked alpha-synuclein amyloid fibrils. Mol Cell. 2015;59:781–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ciechanover A. Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting, Hematology. American Society of Hematology. Educ Program. 2006;1–12:505–6.

    Google Scholar 

  19. Reinstein E, Ciechanover A. Narrative review: Protein degradation and human diseases: the ubiquitin connection. Ann Intern Med. 2006;145:676–84.

    Article  PubMed  Google Scholar 

  20. Alzheimer’s Association. 2015 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2015;11:332–84.

    Article  Google Scholar 

  21. Jeong S. Molecular and cellular basis of neurodegeneration in Alzheimer’s disease. Mol Cell. 2017;40(9):613–20.

    CAS  Google Scholar 

  22. Metaxas A, Kempf SJ. Neurofibrillary tangles in Alzheimer’s disease: Elucidation of the molecular mechanism by immunohistochemistry and tau protein phosphoproteomics. Neural Regen Res. 2016;11:1579–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci. 2011;34:185–204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bekris LM, Galloway NM, Millard S, Lockhart D, Li G, Galasko DR, Farlow MR, Clark CM, Quinn JF, Kaye JA, Schellenberg GD, Leverenz JB, Seubert P, Tsuang DW, Peskind ER, Yu CE. Amyloid precursor protein (APP) processing genes and cerebrospinal fluid APP cleavage product levels in Alzheimer’s disease. Neurobiol Aging. 2011;32(556):e513–23.

    Google Scholar 

  25. Vandersteen A, Hubin E, Sarroukh R, De Baets G, Schymkowitz J, Rousseau F, Subramaniam V, Raussens V, Wenschuh H, Wildemann D, Broersen K. A comparative analysis of the aggregation behavior of amyloid-beta peptide variants. FEBS Lett. 2012;586:4088–93.

    Article  CAS  PubMed  Google Scholar 

  26. Weidemann A, Eggert S, Reinhard FB, Vogel M, Paliga K, Baier G, Masters CL, Beyreuther K, Evin G. A novel epsilon-cleavage within the transmembrane domain of the Alzheimer amyloid precursor protein demonstrates homology with Notch processing. Biochemistry. 2002;41:2825–35.

    Article  CAS  PubMed  Google Scholar 

  27. Vigo-Pelfrey C, Lee D, Keim P, Lieberburg I, Schenk DB. Characterization of beta-amyloid peptide from human cerebrospinal fluid. J Neurochem. 1993;61:1965–8.

    Article  CAS  PubMed  Google Scholar 

  28. Takami M, Nagashima Y, Sano Y, Ishihara S, Morishima-Kawashima M, Funamoto S, Ihara Y. Gamma-Secretase: Successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment. J Neurosci Off J Soc Neurosci. 2009;29:13042–52.

    Article  CAS  Google Scholar 

  29. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A. 1985;82:4245–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen WT, Hong CJ, Lin YT, Chang WH, Huang HT, Liao JY, Chang YJ, Hsieh YF, Cheng CY, Liu HC, Chen YR, Cheng IH. Amyloid-beta (Abeta) D7H mutation increases oligomeric Abeta42 and alters properties of Abeta-zinc/copper assemblies. PloS One. 2012;7:e35807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hatami A, Monjazeb S, Milton S, Glabe CG. Familial Alzheimer’s disease mutations within the amyloid precursor protein alter the aggregation and conformation of the amyloid-beta peptide. J Biol Chem. 2017;292:3172–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kovacs GG, Budka H. Prion diseases: From protein to cell pathology. Am J Pathol. 2008;172:555–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Prusiner SB. Prions. Proc Natl Acad Sci U S A. 1998;95:13363–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Halliday M, Mallucci GR. Review: Modulating the unfolded protein response to prevent neurodegeneration and enhance memory. Neuropathol Appl Neurobiol. 2015;41:414–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zoghbi HY, Orr HT. Glutamine repeats and neurodegeneration. Annu Rev Neurosci. 2000;23:217–47.

    Article  CAS  PubMed  Google Scholar 

  36. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature. 1991;352:77–9.

    Article  PubMed  Google Scholar 

  37. Cummings CJ, Zoghbi HY. Trinucleotide repeats: Mechanisms and pathophysiology. Annu Rev Genomics Hum Genet. 2000;1:281–328.

    Article  CAS  PubMed  Google Scholar 

  38. Reichmann H, Brandt MD, Klingelhoefer L. The nonmotor features of Parkinson’s disease: Pathophysiology and management advances. Curr Opin Neurol. 2016;29:467–73.

    Article  PubMed  Google Scholar 

  39. Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, Clark HB, Zoghbi HY, Orr HT. Ataxin-1 nuclear localization and aggregation: Role in polyglutamine-induced disease in SCA1 transgenic mice. Cell. 1998;95:41–53.

    Article  CAS  PubMed  Google Scholar 

  40. Orr HT, Chung MY, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993;4:221–6.

    Article  CAS  PubMed  Google Scholar 

  41. Sawa A, Wiegand GW, Cooper J, Margolis RL, Sharp AH, Lawler JF Jr, Greenamyre JT, Snyder SH, Ross CA. Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent Mitochondrial depolarization. Nat Med. 1999;5:1194–8.

    Article  CAS  PubMed  Google Scholar 

  42. Chen S, Ferrone FA, Wetzel R. Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc Natl Acad Sci U S A. 2002;99:11884–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wetzel R. Physical chemistry of polyglutamine: Intriguing tales of a monotonous sequence. J Mol Biol. 2012;421:466–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hoop CL, Lin HK, Kar K, Magyarfalvi G, Lamley JM, Boatz JC, Mandal A, Lewandowski JR, Wetzel R, van der Wel PC. Huntingtin exon 1 fibrils feature an interdigitated beta-hairpin-based polyglutamine core. Proc Natl Acad Sci U S A. 2016;113:1546–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kar K, Jayaraman M, Sahoo B, Kodali R, Wetzel R. Critical nucleus size for disease-related polyglutamine aggregation is repeat-length dependent. Nat Struct Mol Biol. 2011;18:328–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lotharius J, Brundin P. Pathogenesis of Parkinson’s disease: Dopamine, vesicles and alpha-synuclein. Nat Rev. Neurosci. 2002;3:932–42.

    Article  CAS  PubMed  Google Scholar 

  47. Dauer W, Przedborski S. Parkinson’s disease: Mechanisms and models. Neuron. 2003;39:889–909.

    Article  CAS  PubMed  Google Scholar 

  48. Girault JA, Greengard P. The neurobiology of dopamine signaling. Arch Neurol. 2004;61:641–4.

    Article  PubMed  Google Scholar 

  49. Nagahama Y, Okina T, Suzuki N. Neuropsychological differences related to age in dementia with Lewy bodies. Dement Geriatr Cogn Dis Extra. 2017;7:188–94.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tercjak A, Bergareche A, Caballero C, Tunon T, Linazasoro G. Lewy bodies under atomic force microscope. Ultrastruct Pathol. 2014;38:1–5.

    Article  PubMed  Google Scholar 

  51. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–40.

    Article  CAS  PubMed  Google Scholar 

  52. Stacy M. Nonmotor symptoms in Parkinson’s disease. Int J Neurosci. 2011;121(Suppl 2):9–17.

    Article  PubMed  Google Scholar 

  53. Park A, Stacy M. Dopamine-induced nonmotor symptoms of Parkinson’s disease. Parkinsons Dis. 2011;2011:485063.

    PubMed  PubMed Central  Google Scholar 

  54. Klingelhoefer L, Reichmann H. The gut and nonmotor symptoms in Parkinson’s disease. Int Rev Neurobiol. 2017;134:787–809.

    Article  PubMed  Google Scholar 

  55. Galabova G, Brunner S, Winsauer G, Juno C, Wanko B, Mairhofer A, Luhrs P, Schneeberger A, von Bonin A, Mattner F, Schmidt W, Staffler G. Peptide-based anti-PCSK9 vaccines – An approach for long-term LDLc management. PloS One. 2014;9:e114469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem. 2006;75:333–66.

    Article  CAS  PubMed  Google Scholar 

  57. Chiti F, Dobson CM. Amyloid formation by globular proteins under native conditions. Nat Chem Biol. 2009;5:15–22.

    Article  CAS  PubMed  Google Scholar 

  58. Jaikaran ET, Clark A. Islet amyloid and type 2 diabetes: From molecular misfolding to islet pathophysiology. Biochim Biophys Acta. 2001;1537:179–203.

    Article  CAS  PubMed  Google Scholar 

  59. Moreau KL, King JA. Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol Med. 2012;18:273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Knowles TP, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev. Mol Cell Biol. 2014;15:384–96.

    Article  CAS  PubMed  Google Scholar 

  61. Cao P, Marek P, Noor H, Patsalo V, Tu LH, Wang H, Abedini A, Raleigh DP. Islet amyloid: From fundamental biophysics to mechanisms of cytotoxicity. FEBS Lett. 2013;587:1106–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Abedini A, Schmidt AM. Mechanisms of islet amyloidosis toxicity in type 2 diabetes. FEBS Lett. 2013;587:1119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Westermark P, Engstrom U, Johnson KH, Westermark GT, Betsholtz C. Islet amyloid polypeptide: Pinpointing amino acid residues linked to amyloid fibril formation. Proc Natl Acad Sci U S A. 1990;87:5036–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Marzban L, Soukhatcheva G, Verchere CB. Role of carboxypeptidase E in processing of pro-islet amyloid polypeptide in {beta}-cells. Endocrinology. 2005;146:1808–17.

    Article  CAS  PubMed  Google Scholar 

  65. Park K, Verchere CB. Identification of a heparin binding domain in the N-terminal cleavage site of pro-islet amyloid polypeptide. Implications for islet amyloid formation. J Biol Chem. 2001;276:16611–6.

    Article  CAS  PubMed  Google Scholar 

  66. Anand BG, Shekhawat DS, Dubey K, Kar K. Uniform, Polycrystalline, and thermostable piperine-coated gold nanoparticles to target insulin fibril assembly. ACS Biomater Sci Eng. 2017;3:1136–45.

    Article  CAS  PubMed  Google Scholar 

  67. Dubey K, Anand BG, Badhwar R, Bagler G, Navya PN, Daima HK, Kar K. Tyrosine- and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin. Amino Acids. 2015;47:2551–60.

    Article  CAS  PubMed  Google Scholar 

  68. Dubey K, Anand BG, Sekhawat DS, Kar K. Eugenol prevents amyloid fibril formation of proteins and inhibits amyloid induced hemolysis. Sci Rep. 2017;7:40744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dubey K, Anand BG, Temgire MK, Kar K. Evidence of rapid coaggregation of globular proteins during amyloid formation. Biochemistry. 2014;53:8001–4.

    Article  CAS  PubMed  Google Scholar 

  70. Cohen E, Dillin A. The insulin paradox: Aging, proteotoxicity and neurodegeneration. Nat Rev Neurosci. 2008;9:759–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu X, Long E, Lin H, Liu Y. Prevalence and epidemiological characteristics of congenital cataract: A systematic review and meta-analysis. Sci Rep. 2016;6:28564.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Foster A, Gilbert C, Rahi J. Epidemiology of cataract in childhood: A global perspective. J cataract Refract Surg. 1997;23(Suppl 1):601–4.

    Article  PubMed  Google Scholar 

  73. Hains PG, Truscott RJ. Post-translational modifications in the nuclear region of young, aged, and cataract human lenses. J Proteome Res. 2007;6:3935–43.

    Article  CAS  PubMed  Google Scholar 

  74. Bloemendal H, de Jong W, Jaenicke R, Lubsen NH, Slingsby C, Tardieu A. Ageing and vision: Structure, stability and function of lens crystallins. Progr Biophys Mol Biol. 2004;86:407–85.

    Article  CAS  Google Scholar 

  75. Perng MD, Muchowski PJ, van Den IP, Wu GJ, Hutcheson AM, Clark JI, Quinlan RA. The cardiomyopathy and lens cataract mutation in alpha B-crystallin alters its protein structure, chaperone activity, and interaction with intermediate filaments in vitro. J Biol Chem. 1999;274:33235–43.

    Article  CAS  PubMed  Google Scholar 

  76. Perng MD, Cairns L, van den IP, Prescott A, Hutcheson AM, Quinlan RA. Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. J Cell Sci. 1999;112(Pt 13):2099–112.

    Article  CAS  PubMed  Google Scholar 

  77. Falk RH, Comenzo RL, Skinner M. The systemic amyloidoses. N Engl J Med. 1997;337:898–909.

    Article  CAS  PubMed  Google Scholar 

  78. Comenzo RL. Systemic immunoglobulin light-chain amyloidosis. Clin Lymphoma Myeloma. 2006;7:182–5.

    Article  CAS  PubMed  Google Scholar 

  79. Marin-Argany M, Lin Y, Misra P, Williams A, Wall JS, Howell KG, Elsbernd LR, McClure M, Ramirez-Alvarado M. Cell damage in light chain amyloidosis: FIBRIL internalization, toxicity and cell-mediated seeding. J Biol Chem. 2016;291:19813–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Westermark GT, Fandrich M, Westermark P. AA amyloidosis: Pathogenesis and targeted therapy. Annu Rev Pathol. 2015;10:321–44.

    Article  CAS  PubMed  Google Scholar 

  81. Gertz MA, Benson MD, Dyck PJ, Grogan M, Coelho T, Cruz M, Berk JL, Plante-Bordeneuve V, Schmidt HHJ, Merlini G. Diagnosis, Prognosis, and therapy of transthyretin amyloidosis. J Am Coll Cardiol. 2015;66:2451–66.

    Article  CAS  PubMed  Google Scholar 

  82. Pitkanen P, Westermark P, Cornwell GG 3rd. Senile systemic amyloidosis. Am J Pathol. 1984;117:391–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ueda M, Horibata Y, Shono M, Misumi Y, Oshima T, Su Y, Tasaki M, Shinriki S, Kawahara S, Jono H, Obayashi K, Ogawa H, Ando Y. Clinicopathological features of senile systemic amyloidosis: An ante- and post-mortem study. Mod Pathol Off J U S Canad Acad Pathol, Inc. 2011;24:1533–44.

    CAS  Google Scholar 

  84. Moss RJ, Mastri AR, Schut LJ. The coexistence and differentiation of late onset Huntington’s disease and Alzheimer’s disease. A case report and review of the literature. J Am Geriatr Soc. 1988;36:237–41.

    Article  CAS  PubMed  Google Scholar 

  85. Tada M, Coon EA, Osmand AP, Kirby PA, Martin W, Wieler M, Shiga A, Shirasaki H, Makifuchi T, Yamada M, Kakita A, Nishizawa M, Takahashi H, Paulson HL. Coexistence of Huntington’s disease and amyotrophic lateral sclerosis: A clinicopathologic study. Acta Neuropathol. 2012;124:749–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Takei Y, Oguchi K, Koshihara H, Hineno A, Nakamura A, Ohara S. alpha-Synuclein coaggregation in familial amyotrophic lateral sclerosis with SOD1 gene mutation. Hum Pathol. 2013;44:1171–6.

    Article  PubMed  Google Scholar 

  87. Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature. 2009;457:1128–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Anand BG, Dubey K, Shekhawat DS, Kar K. Intrinsic property of phenylalanine to trigger protein aggregation and hemolysis has a direct relevance to phenylketonuria. Sci Rep. 2017;7:11146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Lomakin A, Chung DS, Benedek GB, Kirschner DA, Teplow DB. On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci U S A. 1996;93:1125–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xue WF, Homans SW, Radford SE. Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc Natl Acad Sci U S A. 2008;105:8926–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wetzel R. Kinetics and thermodynamics of amyloid fibril assembly. Acc Chem Res. 2006;39:671–9.

    Article  CAS  PubMed  Google Scholar 

  92. Misra P, Kodali R, Chemuru S, Kar K, Wetzel R. Rapid alpha-oligomer formation mediated by the Abeta C terminus initiates an amyloid assembly pathway. Nat Commun. 2016;7:12419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kar K, Baker MA, Lengyel GA, Hoop CL, Kodali R, Byeon IJ, Horne WS, van der Wel PC, Wetzel R. Backbone engineering within a latent beta-hairpin structure to design inhibitors of polyglutamine amyloid formation. J Mol Biol. 2017;429:308–23.

    Article  CAS  PubMed  Google Scholar 

  94. Kar K, Hoop CL, Drombosky KW, Baker MA, Kodali R, Arduini I, van der Wel PC, Horne WS, Wetzel R. Beta-hairpin-mediated nucleation of polyglutamine amyloid formation. J Mol Biol. 2013;425:1183–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bemporad F, Taddei N, Stefani M, Chiti F. Assessing the role of aromatic residues in the amyloid aggregation of human muscle acylphosphatase. Protein Sci. 2006;15:862–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Apetri MM, Maiti NC, Zagorski MG, Carey PR, Anderson VE. Secondary structure of alpha-synuclein oligomers: Characterization by Raman and atomic force microscopy. J Mol Biol. 2006;355:63–71.

    Article  CAS  PubMed  Google Scholar 

  97. Maiti NC, Apetri MM, Zagorski MG, Carey PR, Anderson VE. Raman spectroscopic characterization of secondary structure in natively unfolded proteins: Alpha-synuclein. J Am Chem Soc. 2004;126:2399–408.

    Article  CAS  PubMed  Google Scholar 

  98. Holm NK, Jespersen SK, Thomassen LV, Wolff TY, Sehgal P, Thomsen LA, Christiansen G, Andersen CB, Knudsen AD, Otzen DE. Aggregation and fibrillation of bovine serum albumin. Biochim Biophys Acta. 2007;1774:1128–38.

    Article  CAS  PubMed  Google Scholar 

  99. Tyedmers J, Mogk A, Bukau B. Cellular strategies for controlling protein aggregation. Nat Rev. Mol Cell Biol. 2010;11:777–88.

    Article  CAS  PubMed  Google Scholar 

  100. Schmittschmitt JP, Scholtz JM. The role of protein stability, solubility, and net charge in amyloid fibril formation. Protein Sci. 2003;12:2374–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gazit E. A possible role for pi-stacking in the self-assembly of amyloid fibrils. FASEB J: Off Publ Fed Am Soc Exp Biol. 2002;16:77–83.

    Article  CAS  Google Scholar 

  102. Tartaglia GG, Cavalli A, Pellarin R, Caflisch A. The role of aromaticity, exposed surface, and dipole moment in determining protein aggregation rates. Protein Sci. 2004;13:1939–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Luhrs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Dobeli H, Schubert D, Riek R. 3D structure of Alzheimer’s amyloid-beta(1-42) fibrils. Proc Natl Acad Sci U S A. 2005;102:17342–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ostrowitzki S, Deptula D, Thurfjell L, Barkhof F, Bohrmann B, Brooks DJ, Klunk WE, Ashford E, Yoo K, Xu ZX, Loetscher H, Santarelli L. Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch Neurol. 2012;69:198–207.

    Article  PubMed  Google Scholar 

  105. Wilcock GK, Black SE, Hendrix SB, Zavitz KH, Swabb EA, Laughlin MA. Efficacy and safety of tarenflurbil in mild to moderate Alzheimer’s disease: A randomised phase II trial. Lancet. Neurol. 2008;7:483–93.

    Article  CAS  PubMed  Google Scholar 

  106. Swaminathan R, Ravi VK, Kumar S, Kumar MV, Chandra N. Lysozyme: A model protein for amyloid research. Adv Protein Chem Struct Biol. 2011;84:63–111.

    Article  CAS  PubMed  Google Scholar 

  107. Gong H, He Z, Peng A, Zhang X, Cheng B, Sun Y, Zheng L, Huang K. Effects of several quinones on insulin aggregation. Sci Rep. 2014;4:5648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wu G, Robertson DH, Brooks CL 3rd, Vieth M. Detailed analysis of grid-based molecular docking: A case study of CDOCKER-A CHARMm-based MD docking algorithm. J Comput Chem. 2003;24:1549–62.

    Article  CAS  PubMed  Google Scholar 

  109. Pepys MB, Hawkins PN, Booth DR, Vigushin DM, Tennent GA, Soutar AK, Totty N, Nguyen O, Blake CC, Terry CJ, et al. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature. 1993;362:553–7.

    Article  CAS  PubMed  Google Scholar 

  110. Dische FE, Wernstedt C, Westermark GT, Westermark P, Pepys MB, Rennie JA, Gilbey SG, Watkins PJ. Insulin as an amyloid-fibril protein at sites of repeated insulin injections in a diabetic patient. Diabetologia. 1988;31:158–61.

    Article  CAS  PubMed  Google Scholar 

  111. Hjorth CF, Norrman M, Wahlund PO, Benie AJ, Petersen BO, Jessen CM, Pedersen TA, Vestergaard K, Steensgaard DB, Pedersen JS, Naver H, Hubalek F, Poulsen C, Otzen D. Structure, aggregation, and activity of a covalent insulin dimer formed during storage of neutral formulation of human insulin. J Pharm Sci. 2016;105:1376–86.

    Article  CAS  PubMed  Google Scholar 

  112. Wang F, Hull RL, Vidal J, Cnop M, Kahn SE. Islet amyloid develops diffusely throughout the pancreas before becoming severe and replacing endocrine cells. Diabetes. 2001;50:2514–20.

    Article  CAS  PubMed  Google Scholar 

  113. Skovronsky DM, Lee VM, Trojanowski JQ. Neurodegenerative diseases: New concepts of pathogenesis and their therapeutic implications. Annu Rev Pathol. 2006;1:151–70.

    Article  CAS  PubMed  Google Scholar 

  114. Kar K, Kishore N. Enhancement of thermal stability and inhibition of protein aggregation by osmolytic effect of hydroxyproline. Biopolymers. 2007;87:339–51.

    Article  CAS  PubMed  Google Scholar 

  115. Shiraki K, Kudou M, Fujiwara S, Imanaka T, Takagi M. Biophysical effect of amino acids on the prevention of protein aggregation. J Biochem. 2002;132:591–5.

    Article  CAS  PubMed  Google Scholar 

  116. Ghosh R, Sharma S, Chattopadhyay K. Effect of arginine on protein aggregation studied by fluorescence correlation spectroscopy and other biophysical methods. Biochemistry. 2009;48:1135–43.

    Article  CAS  PubMed  Google Scholar 

  117. Etienne MA, Aucoin JP, Fu Y, McCarley RL, Hammer RP. Stoichiometric inhibition of amyloid beta-protein aggregation with peptides containing alternating alpha, alpha-disubstituted amino acids. J Am Chem Soc. 2006;128:3522–3.

    Article  CAS  PubMed  Google Scholar 

  118. Rajasekhar K, Suresh SN, Manjithaya R, Govindaraju T. Rationally designed peptidomimetic modulators of abeta toxicity in Alzheimer’s disease. Sci Rep. 2015;5:8139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Viet MH, Ngo ST, Lam NS, Li MS. Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity. J Phys Chem. 2011;B115:7433–46.

    Article  CAS  Google Scholar 

  120. Anand BG, Dubey K, Shekhawat DS, Kar K. Capsaicin-coated silver nanoparticles inhibit amyloid fibril formation of serum albumin. Biochemistry. 2016;55:3345–8.

    Article  CAS  PubMed  Google Scholar 

  121. Siposova K, Kubovcikova M, Bednarikova Z, Koneracka M, Zavisova V, Antosova A, Kopcansky P, Daxnerova Z, Gazova Z. Depolymerization of insulin amyloid fibrils by albumin-modified magnetic fluid. Nanotechnology. 2012;23:055101.

    Article  PubMed  CAS  Google Scholar 

  122. Skaat H, Chen R, Grinberg I, Margel S. Engineered polymer nanoparticles containing hydrophobic dipeptide for inhibition of amyloid-beta fibrillation. Biomacromolecules. 2012;13:2662–70.

    Article  CAS  PubMed  Google Scholar 

  123. Alvarez YD, Fauerbach JA, Pellegrotti JV, Jovin TM, Jares-Erijman EA, Stefani FD. Influence of gold nanoparticles on the kinetics of alpha-synuclein aggregation. Nano Lett. 2013;13:6156–63.

    Article  CAS  PubMed  Google Scholar 

  124. Ben-Zvi A, Miller EA, Morimoto RI. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci U S A. 2009;106:14914–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Douglas PM, Dillin A. Protein homeostasis and aging in neurodegeneration. J Cell Biol. 2010;190:719–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47.

    Article  CAS  PubMed  Google Scholar 

  128. Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science. 2008;319:916–9.

    Article  CAS  PubMed  Google Scholar 

  129. Gidalevitz T, Ben-Zvi A, Ho KH, Brignull HR, Morimoto RI. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science. 2006;311:1471–4.

    Article  CAS  PubMed  Google Scholar 

  130. Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH, Tartaglia GG, Vendruscolo M, Hayer-Hartl M, Hartl FU, Vabulas RM. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell. 2011;144:67–78.

    Article  CAS  PubMed  Google Scholar 

  131. Scekic-Zahirovic J, Sendscheid O, El Oussini H, Jambeau M, Sun Y, Mersmann S, Wagner M, Dieterle S, Sinniger J, Dirrig-Grosch S, Drenner K, Birling MC, Qiu J, Zhou Y, Li H, Fu XD, Rouaux C, Shelkovnikova T, Witting A, Ludolph AC, Kiefer F, Storkebaum E, Lagier-Tourenne C, Dupuis L. Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss. EMBO J. 2016;35:1077–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Alavez S, Vantipalli MC, Zucker DJ, Klang IM, Lithgow GJ. Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature. 2011;472:226–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kaeberlein M, Burtner CR, Kennedy BK. Recent developments in yeast aging. PLoS Genet. 2007;3:e84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Ray LB. Protein aggregation-mediated aging in yeast. Science. 2017;355:1169–71.

    PubMed  Google Scholar 

  135. Walther DM, Kasturi P, Zheng M, Pinkert S, Vecchi G, Ciryam P, Morimoto RI, Dobson CM, Vendruscolo M, Mann M, Hartl FU. Widespread proteome remodeling and aggregation in aging C. elegans. Cell. 2015;161:919–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Schlissel G, Krzyzanowski MK, Caudron F, Barral Y, Rine J. Aggregation of the Whi3 protein, not loss of heterochromatin, causes sterility in old yeast cells. Science. 2017;355:1184–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell. 2008;132:1025–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hsu AL, Murphy CT, Kenyon C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science. 2003;300:1142–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karunakar Kar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kar, K., Anand, B.G., Dubey, K., Shekhawat, D.S. (2020). Protein Aggregation, Related Pathologies, and Aging. In: Rath, P. (eds) Models, Molecules and Mechanisms in Biogerontology. Springer, Singapore. https://doi.org/10.1007/978-981-32-9005-1_19

Download citation

Publish with us

Policies and ethics