Skip to main content
Log in

Diverse functions of fibulin-5 in tumor

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Altered interactions between the extracellular matrix and cells play an important part in tumorigenesis and metastasis. As a member of a matricellular glycoprotein, fibulin-5 is expressed in elastin-rich tissues and organizes the matrix structures by interacting with many extracellular proteins. Fibulin-5 expression is closely associated with normal embryonic development and organogenesis. Mice deficient for the fibulin-5 gene exhibit systemic elastic fiber defects with manifestation of loose skin, emphysematous lungs and tortuous vessels. Additionally, fibulin-5 null mice exhibited increased angiogenesis after wound healing or PVA sponge implantation and matrigel implantation experiments show that fibulin-5 inhibits vessel formation, suggesting its function as an angiogenesis inhibitor. Fibulin-5 also plays critical roles in proliferation, migration and invasion of certain tumors, and the effect of fibulin-5 on tumorigenesis appears to be largely context-dependent. This effect might involve the inhibiting action of fibulin-5 on angiogenesis. This review focuses on recent advances in our understanding of the roles of fibulin-5 in tumorigenesis: both tumor promoting and suppressing activities of fibulin-5 are reviewed, and the emerging evidence of its promising potential for therapeutic options and/or targets in the treatment of cancer is also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ECM:

extracellular matrix

EGF:

epidermal growth factor

EMT:

epithelial-mesenchymal transitions

ERK:

extracellular signal-regulated kinase

LTBP-2:

latent TGF-β-binding protein 2

LOXL-1:

lysyl oxidase-like enzyme 1

MAPK:

mitogen-activated protein kinases

MMP:

matrix metalloproteinase

PDGF:

platelet-derived growth factor

RGD:

arginine-glycine-aspartic acid

ROS:

reactive oxygen species

TGF-β:

transforming growth factor β

TSP-1:

thrombospondin 1

VEGF:

vascular endothelial growth factor

References

  1. Paez-Pereda M., Kuchenbauer F., Arzt E., Stalla G.K. 2005. Regulation of pituitary hormones and cell proliferation by components of the extracellular matrix. Braz. J. Med. Biol. Res. 38, 1487–1494.

    Article  CAS  PubMed  Google Scholar 

  2. Chong H.C., Tan C.K., Huang R.L., Tan N.S. 2012. Matricellular proteins: A sticky affair with cancers. J. Oncol. 2012, 351089.

    Article  PubMed Central  PubMed  Google Scholar 

  3. de Vega S., Iwamoto T., Yamada Y. 2009. Fibulins: Multiple roles in matrix structures and tissue functions. Cell Mol. Life Sci. 66, 1890–1902.

    Article  PubMed  Google Scholar 

  4. Kowal R.C., Richardson J.A., Miano J.M., Olson E.N. 1999. EVEC, a novel epidermal growth factor-like repeat-containing protein upregulated in embryonic and diseased adult vasculature. Circ. Res. 84, 1166–1176.

    Article  CAS  PubMed  Google Scholar 

  5. Nakamura T., Ruiz-Lozano P., Lindner V., Yabe D., Taniwaki M., Furukawa Y., Kobuke K., Tashiro K., Lu Z., Andon N.L., Schaub R., Matsumori A., Sasayama S., Chien K.R., Honjo T. 1999. DANCE, a novel secreted RGD protein expressed in developing, atherosclerotic, and balloon-injured arteries. J. Biol. Chem. 274, 22476–22483.

    Article  CAS  PubMed  Google Scholar 

  6. Yue W., Sun Q., Landreneau R., Wu C., Siegfried J.M., Yu J., Zhang L. 2009. Fibulin-5 suppresses lung cancer invasion by inhibiting matrix metalloproteinase-7 expression. Cancer Res. 69, 6339–6346.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Wlazlinski A., Engers R., Hoffmann M.J., Hader C., Jung V., Muller M., Schulz W.A. 2007. Downregulation of several fibulin genes in prostate cancer. Prostate. 67, 1770–1780.

    Article  CAS  PubMed  Google Scholar 

  8. Schiemann W.P., Blobe G.C., Kalume D.E., Pandey A., Lodish H.F. 2002. Context-specific effects of fibulin-5 (DANCE/EVEC) on cell proliferation, motility, and invasion. Fibulin-5 is induced by transforming growth factor-beta and affects protein kinase cascades. J. Biol. Chem. 277, 27367–27377.

    Article  CAS  PubMed  Google Scholar 

  9. Hwang C.F., Shiu L.Y., Su L.J., Yu-Fang Y., Wang W.S., Huang S.C., Chiu T.J., Huang C.C., Zhen Y.Y., Tsai H.T., Fang F.M., Huang T.L., Chen C.H. 2013. Oncogenic fibulin-5 promotes nasopharyngeal carcinoma cell metastasis through the FLJ10540/AKT pathway and correlates with poor prognosis. PLoS ONE. 8, e84218.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Yanagisawa H., Schluterman M.K., Brekken R.A. 2009. Fibulin-5, an integrin-binding matricellular protein: Its function in development and disease. J. Cell Commun. Signal. 3, 337–347.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Albig A.R., Schiemann W.P. 2004. Fibulin-5 antagonizes vascular endothelial growth factor (VEGF) signaling and angiogenic sprouting by endothelial cells. DNA Cell Biol. 23, 367–379.

    Article  CAS  PubMed  Google Scholar 

  12. Nakamura T., Lozano P.R., Ikeda Y., Iwanaga Y., Hinek A., Minamisawa S., Cheng C.F., Kobuke K., Dalton N., Takada Y., Tashiro K., Ross J., Jr., Honjo T., Chien K.R. 2002. Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature. 415, 171–175.

    Article  CAS  PubMed  Google Scholar 

  13. Lomas A.C., Mellody K.T., Freeman L.J., Bax D.V., Shuttleworth C.A., Kielty C.M. 2007. Fibulin-5 binds human smooth muscle cells through alpha5beta1 and alpha4beta1 integrins, but does not support receptor activation. Biochem. J. 405, 417–428.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kobayashi N., Kostka G., Garbe J.H., Keene D.R., Bachinger H.P., Hanisch F.G., Markova D., Tsuda T., Timpl R., Chu M.L., Sasaki T. 2007. A comparative analysis of the fibulin protein family: Biochemical characterization, binding interactions, and tissue localization. J. Biol. Chem. 282, 11805–11816.

    Article  CAS  PubMed  Google Scholar 

  15. Hirai M., Ohbayashi T., Horiguchi M., Okawa K., Hagiwara A., Chien K.R., Kita T., Nakamura T. 2007. Fibulin-5/DANCE has an elastogenic organizer activity that is abrogated by proteolytic cleavage in vivo. J. Cell Biol. 176, 1061–1071.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hirai M., Horiguchi M., Ohbayashi T., Kita T., Chien K.R., Nakamura T. 2007. Latent TGF-beta-binding protein 2 binds to DANCE/fibulin-5 and regulates elastic fiber assembly. EMBO J. 26, 3283–3295.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lee Y.H., Albig A.R., Regner M., Schiemann B.J., Schiemann W.P. 2008. Fibulin-5 initiates epithelialmesenchymal transition (EMT) and enhances EMT induced by TGF-beta in mammary epithelial cells via a MMP-dependent mechanism. Carcinogenesis. 29, 2243–2251.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zavadil J., Bottinger E.P. 2005. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 24, 5764–5774.

    Article  CAS  PubMed  Google Scholar 

  19. Bhowmick N.A., Zent R., Ghiassi M., McDonnell M., Moses H.L. 2001. Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J. Biol. Chem. 276, 46707–46713.

    Article  CAS  PubMed  Google Scholar 

  20. Galliher A.J., Schiemann W.P. 2007. Src phosphorylates Tyr284 in TGF-beta type II receptor and regulates TGF-beta stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Res. 67, 3752–3758.

    Article  CAS  PubMed  Google Scholar 

  21. Xie L., Palmsten K., MacDonald B., Kieran M.W., Potenta S., Vong S., Kalluri R. 2008. Basement membrane derived fibulin-1 and fibulin-5 function as angiogenesis inhibitors and suppress tumor growth. Exp. Biol. Med. (Maywood). 233, 155–162.

    Article  CAS  PubMed  Google Scholar 

  22. Albig A.R., Neil J.R., Schiemann W.P. 2006. Fibulins 3 and 5 antagonize tumor angiogenesis in vivo. Cancer Res. 66, 2621–2629.

    Article  CAS  PubMed  Google Scholar 

  23. Moller H.D., Ralfkjaer U., Cremers N., Frankel M., Pedersen R.T., Klingelhofer J., Yanagisawa H., Grigorian M., Guldberg P., Sleeman J., Lukanidin E., Ambartsumian N. 2011. Role of fibulin-5 in metastatic organ colonization. Mol. Cancer Res. 9, 553–563.

    Article  PubMed  Google Scholar 

  24. Schluterman M.K., Chapman S.L., Korpanty G., Ozumi K., Fukai T., Yanagisawa H., Brekken, R.A. 2010. Loss of fibulin-5 binding to beta1 integrins inhibits tumor growth by increasing the level of ROS. Dis. Model. Mech. 3, 333–342.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Spencer J.A., Hacker S.L., Davis E.C., Mecham R.P., Knutsen R.H., Li D.Y., Gerard R.D., Richardson J.A., Olson E.N., Yanagisawa H. 2005. Altered vascular remodeling in fibulin-5-deficient mice reveals a role of fibulin-5 in smooth muscle cell proliferation and migration. Proc. Natl. Acad. Sci. U. S. A. 102, 2946–2951.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sullivan K.M., Bissonnette R., Yanagisawa H., Hussain S.N., Davis E.C. 2007. Fibulin-5 functions as an endogenous angiogenesis inhibitor. Lab. Invest. 87, 818–827.

    Article  CAS  PubMed  Google Scholar 

  27. Kapetanopoulos A., Fresser F., Millonig G., Shaul Y., Baier G., Utermann G. 2002. Direct interaction of the extracellular matrix protein DANCE with apolipoprotein(a) mediated by the kringle IV-type 2 domain. Mol. Genet. Genomics. 267, 440–446.

    Article  CAS  PubMed  Google Scholar 

  28. Sideek M.A., Menz C., Parsi M.K., Gibson M.A. 2013. LTBP-2 competes with tropoelastin for binding to fibulin-5 and heparin, and is a negative modulator of elastinogenesis. Matrix Biol. 34, 114–123. doi 10.1016/j.matbio.2013.10.007

    Article  PubMed  Google Scholar 

  29. Noda K., Dabovic B., Takagi K., Inoue T., Horiguchi M., Hirai M., Fujikawa Y., Akama T.O., Kusumoto K., Zilberberg L., Sakai L.Y., Koli K., Naitoh M., von Melchner H., Suzuki S., Rifkin D.B., Nakamura T. 2013. Latent TGF-beta binding protein 4 promotes elastic fiber assembly by interacting with fibulin-5. Proc. Natl. Acad. Sci. U.S.A. 110, 2852–2857.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Freeman L.J., Lomas A., Hodson N., Sherratt M.J., Mellody K.T., Weiss A.S., Shuttleworth A., Kielty C.M. 2005. Fibulin-5 interacts with fibrillin-1 molecules and microfibrils. Biochem. J. 388, 1–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Liu X., Zhao Y., Gao J., Pawlyk B., Starcher B., Spencer J.A., Yanagisawa H., Zuo J., Li T. 2004. Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nature Genet. 36, 178–182.

    Article  CAS  PubMed  Google Scholar 

  32. Wachi H., Nonaka R., Sato F., Shibata-Sato K., Ishida M., Iketani S., Maeda I., Okamoto K., Urban Z., Onoue S., Seyama Y. 2008. Characterization of the molecular interaction between tropoelastin and DANCE/fibulin-5. J. Biochem. 143, 633–639.

    Article  CAS  PubMed  Google Scholar 

  33. Zheng Q., Davis E.C., Richardson J.A., Starcher B.C., Li T., Gerard R.D., Yanagisawa H. 2007. Molecular analysis of fibulin-5 function during de novo synthesis of elastic fibers. Mol. Cell Biol. 27, 1083–1095.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Zhou S., Xiao W., Wan Q., Yi C., Xiao F., Liu Y., Qi Y. 2010. Nogo-B mediates HeLa cell adhesion and motility through binding of fibulin-5. Biochem. Biophys. Res. Commun. 398, 247–253.

    Article  CAS  PubMed  Google Scholar 

  35. Nguyen A.D., Itoh S., Jeney V., Yanagisawa H., Fujimoto M., Ushio-Fukai M., Fukai T. 2004. Fibulin-5 is a novel binding protein for extracellular superoxide dismutase. Circ. Res. 95, 1067–1074.

    Article  CAS  PubMed  Google Scholar 

  36. Zanetti M., Braghetta P., Sabatelli P., Mura I., Doliana R., Colombatti A., Volpin D., Bonaldo P., Bressan G.M. 2004. EMILIN-1 deficiency induces elastogenesis and vascular cell defects. Mol. Cell Biol. 24, 638–650.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Jones R.P., Wang M.C., Jowitt T.A., Ridley C., Mellody K.T., Howard M., Wang T., Bishop P.N., Lotery A.J., Kielty C.M., Baldock C., Trump D. 2009. Fibulin-5 forms a compact dimer in physiological solutions. J. Biol. Chem. 284, 25938–25943.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Matsumoto K., Maniwa T., Tanaka T., Satoh K., Okunishi H., Oda T. 2012. Proteomic analysis of calcified abdominal and thoracic aortic aneurysms. Int. J. Mol. Med. 30, 417–429.

    CAS  PubMed  Google Scholar 

  39. Hu Z., Ai Q., Xu H., Ma X., Li H.Z., Shi T.P., Wang C., Gong D.J., Zhang X. 2011. Fibulin-5 is down-regulated in urothelial carcinoma of bladder and inhibits growth and invasion of human bladder cancer cell line 5637. Urol. Oncol. 29, 430–435.

    Article  CAS  PubMed  Google Scholar 

  40. Ohara H., Akatsuka S., Nagai H., Liu Y.T., Jiang L., Okazaki Y., Yamashita Y., Nakamura T., Toyokuni S. 2011. Stage-specific roles of fibulin-5 during oxidative stress-induced renal carcinogenesis in rats. Free Radic. Res. 45, 211–220.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. -J. Cai.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 6, pp. 875–880.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J.C., Xie, A.Y. & Cai, X.J. Diverse functions of fibulin-5 in tumor. Mol Biol 48, 761–766 (2014). https://doi.org/10.1134/S002689331406017X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689331406017X

Keywords

Navigation