Skip to main content
Log in

Expression of genes in the 111.35–116.16 million bp fragment of chromosome 13 in brain of mice with different predisposition to hereditary catalepsy

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Catalepsy is a pathological animal behavior that is usually associated with dysfunctions in the striatal pallidal system of the brain and can be caused by different reasons. It was previously demonstrated that hereditary catalepsy is linked to the 111.35–116.16 million bp fragment of chromosome 13 in mice. The level of mRNA content in 42 genes localized in this fragment was determined in the study. Two brain departments that are functionally associated with catalepsy (striatum and substantia nigra) were studied in mice from AKR line (resistant to catalepsy), cataleptic CBA line, and recombinant cataleptic AKR.CBA-D13Mit76 (D13) line. The latter was obtained by the transfer of indicated fragment of chromosome 13 from the CBA line to the genome of the AKR line. It was found that two genes (Ndufs4 and Ppap2a) in the striatum and ten genes (Esm1, Fst, Gm10735, Gm15322, Gm15323, Gm15324, Gm15325, Il6st, Il31ra, and Itga1) in the substantia nigra differ in the level of mRNA expression in AKR and D13 lines. The Mcidas gene mRNA level is lower in both structures in D13 line mice than in the AKR line. The expression of the Hspb3 and Mocs2 genes (that encode heat shock protein and molybdenum cofactor synthesis, respectively) is lower in the substantia nigra of CBA and D13 cataleptic line mice than in the AKR line resistant to catalepsy. These genes are considered to be the most likely candidate genes of the catalepsy. The coexpression of a large amount of genes in these brain structures in sick animals indicates the existence of a complex gene network that regulates hereditary catalepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ddx4:

DEAD (Asp-Glu-Ala-Asp) box polypeptide 4

Esm1:

endothelial cell-specific molecule 1

Fst:

follistatin

Gpbp1:

GC-rich promoter binding protein 1

Gzma:

granzyme a

Hspb:

heat shock protein b

Il6st:

interleukin 6 signal transducer

Il31ra:

interleukin 31 receptor a

Itga1:

integrin alpha 1

Mcidas:

multiciliatic differentiation and DNA synthesis associated cell cycle protein

Mocs2:

molybdenum cofactor synthesis 2

Ndufs4:

NADH dehydrogenase (ubiquinone) Fe-S protein 4

Polr2a:

polymerase (RNA) II polypeptide a

Ppap2a:

phosphatic acid phosphatase type 2a

References

  1. Esposito E., Di Matteo V., Di Giovann-i G. 2007. Death in the substantia nigra: A motor tragedy. Expert. Rev. Neurother. 7, 677–697.

    Article  PubMed  CAS  Google Scholar 

  2. Sanberg P.R., Bunsey M.D., Giordano M., Norman A.B. 1998. The catalepsy test: Its ups and downs. Behav. Neurosci. 102, 748–759.

    Article  Google Scholar 

  3. Weder N.D., Muralee S., Penland H., Tampi R.R. 2008. Catotonia: A review. Ann. Clin. Psychiatry. 20, 97–107.

    Article  PubMed  Google Scholar 

  4. Daniels J. 2009. Catotonia: Clinical aspects and neurobiological correlates. J. Neuropsych. Clin. 21, 371–380.

    Article  CAS  Google Scholar 

  5. Bazovkina D.V., Kulikov A.V., Kondaurova E.M., Popova N.K. 2005. Selection for the predisposition to catalepsy enhances depressive-like traits in mice. Russ. J. Genet. 41, 1002–1007.

    Article  CAS  Google Scholar 

  6. Kulikov A.V., Tikhonova M.A., Lebedeva E.I., Chugui V.F., Popova N.K. 2005. Effects of experimental increases and decreases in thyroxine levels on the extent of cataleptic freezing reactions in rats. Neurosci. Behav Physiol. 35, 763–767.

    Article  PubMed  CAS  Google Scholar 

  7. Kulikov A.V., Popova N.K. 2008. Genetic control of catalepsy in mice. In: Genetic Predisposition to Disease. Eds. Torres S.L., Marin M.S. NY: Nova Science, pp. 215–236.

    Google Scholar 

  8. Ahlenius S., Hillegaart V. 1986. Involvement of extrapyramidal motor mechanisms in the supression of locomotor activity by antipsychotic drugs: A comparison between the effects produced by preand post-synaptic inhibition of dopaminergic neurotransmittion. Pharmacol. Biochem. Behav. 24, 1409–1415.

    Article  PubMed  CAS  Google Scholar 

  9. Klemm W.R. 1989. Drug effects on active immobility responses: What they tell us about neurotransmitter systems and motor functions. Prog. Neurobiol. 32, 403–422.

    Article  PubMed  CAS  Google Scholar 

  10. Wadenberg M.L. 1996. Serotonergic mechanisms in neuroleptic-induced catalepsy in the rat. Neurosci. Biobehav. Rev. 20, 325–339.

    Article  PubMed  CAS  Google Scholar 

  11. Caroff S.N., Mann S.C., Keck P.E., Jr., Francis A. 2000. Residual catatonic state following neuroleptic malignant syndrome. J. Clin. Psychopharm. 20, 257–259.

    Article  CAS  Google Scholar 

  12. Paparrigopoulos T., Tzarellas E., Ferentinos P., Mourikis I., Liappas J. 2009. Catatonia as a risk factor for the develepment of neuroleptic malignal syndrome: Report of a case following treatment with clozapine. World J. Biol. Psychiatr. 10, 70–73.

    Article  Google Scholar 

  13. Porsolt R.D., Moser P.C., Castagné V. 2010. Behavioral indices in antipsychotic drug discovery. J. Pharmacol. Exp. Ther. 333, 632–638.

    Article  PubMed  CAS  Google Scholar 

  14. De Ryck M., Teitelbaum P.1984. Morphine catalepsy as an adaptive reflex state in rats. Behav. Neurosci. 98, 243–361.

    Article  PubMed  Google Scholar 

  15. Zarrindast M.R., Bakhsha A., Rostami P., Shafagni B. 2002. Effects of intrahippocampal injection of GABAergic drugs on memory retention of passive avoidance learning in rats. J. Pharmacol. 16, 313–319.

    CAS  Google Scholar 

  16. Little P.J., Compton D.R., Mechoulam R., Martin B.R. 1989. Stereochemical effects of 11-hydroxy-dekta-8-THC-dimethylheptyl in mice and dogs. Pharmacol. Biochem. Behav. 32, 661–666.

    Article  PubMed  CAS  Google Scholar 

  17. Hauber W., Münkle M. 1997. Motor depressant effects mediated by dophamine D2 and adenosine A2A receptors in the nucleus accumbens and the caudate-putamen. Eur. J. Pharmacol. 323, 127–131.

    Article  PubMed  CAS  Google Scholar 

  18. Reavill C., Kettle A., Holland V., Riley G., Blackburn T.P. 1999. Attenuation of haloperidol-induced catalepsy by a 5-HT2C receptor antagonist. Br. J. Pharmacol. 126, 572–574.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Koek W., Khanal M., France C.P. 2007. Synergic interactions between ‘club drugs’: gamma-hydroxybutyrate and phecyclidine enchance each other’s discriminative stimulus effect. Behavior Pharmacol. 18, 807–810.

    Article  CAS  Google Scholar 

  20. Hartgraves S.L., Kelly P.H. 1984. Role of mesencephalic reticular formation in cholinergic-induced catalepsy and anticholinergic reversal of neuroleptic-induced catalepsy. Brain Res. 307, 47–54.

    Article  PubMed  CAS  Google Scholar 

  21. Kulikov A.V., Bazovkina D.V., Moisan M.P., Mormede P. 2003. The mapping of the gene susceptibility to catalepsy in mice using polymorphic microsatellite markers. Dokl. Biol. Sci. 393, 531–534.

    Article  PubMed  CAS  Google Scholar 

  22. Kulikov A.V., Bazovkina D.V., Kondaurova E.M., Popova N.K. 2008. Genetic structure of hereditary catalepsy in mice. Genes Brain Behav. 7, 506–512.

    Article  PubMed  CAS  Google Scholar 

  23. Kulikov A.V., Kozlachova E. Yu., Maslova G.V., Popova N.K. 1993. Inheritance of predisposition to catalepsy in mice. Behav Genet. 23, 379–384.

    Article  PubMed  CAS  Google Scholar 

  24. Chomczynski P., Sacchi N. 1987. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  25. Naumenko V.S., Kulikov A.V. 2006. Quantitative assay of 5-HT(1A) serotonin receptor gene expression in the brain. Mol. Biol. (Moscow). 40, 30–36.

    Article  CAS  Google Scholar 

  26. Kulikov A.V., Naumenko V.S., Voronova I.P., Tikhonova M.A., Popova N.K. 2005. Quantitative RT-PCR of 5-HT1A and 5-HT2A serotonin receptor mRNAs using genomic DNA as an standard. J. Neurosci. Meth. 141, 97–101.

    Article  CAS  Google Scholar 

  27. Kulikov A.V., Naumenko V.S. 2007. Problems of mRNA quantification in the brain Using RT-PCR. In: New Messenger RNA Research Communications. Ed. Kwang L.B. NY: Nova Science, pp. 53–68.

    Google Scholar 

  28. Naumenko V.S., Osipova D.V., Kostina E.V., Kulikov A.V. 2008. Utilization of a two-standard system in real-time PCR for quantification of gene expression in the brain. J. Neurosci. Meth. 17, 197–203.

    Article  Google Scholar 

  29. Radoníc A., Thulke S., Mackay I.M., Landt O., Siegert W., Nitsche A. 2004. Guideline to reference gene selection for quantitative real-time PCR. Biochem. Biophys. Res. Commun. 313, 856–862.

    Article  PubMed  Google Scholar 

  30. Squire L.R., Berg D., Bloom F., du Lac S., Ghosh A. 2008. Fundamental Neuroscience. NY: Academic.

    Google Scholar 

  31. Stubbs J.L., Vladar E.K., Axelrod J.D., Kintner C. 2012. Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation. Nature Cell Biol. 14, 140–147.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Pefani D.-E., Dimaki M., Spella M., Karantzelis N., Mitsiki E., Kyrousi C., Symeonidou I.-E., Perrakis A., Taraviras S., Lygerou Z. 2011. Idas, a novel phylogenetically conserved geminin-related protein, binds to geminin and is required for cell cycle progression. J. Biol. Chem. 286, 23234–23246.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Islam A., Deuster P.A., Devaney J.M., Ghimbovschi S., Chen Y. 2013. An exploration of heat tolerance in mice utilizing mRNA and microRNA expression analysis. PLoS ONE. 8, e72258–e72268.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Reiss J., Hahnewald R. 2011. Molybdenum cofactor deficiency: Mutations in GPHN, MOCS1, and MOCS2. Hum. Mutat. 32, 10–18.

    Article  PubMed  CAS  Google Scholar 

  35. Bazovkina D.V., Tibeikina M.A., Kulikov A.V., Popova N.K. 2011. Effects of lipopolysaccharide and interleukin-6 on cataleptic immobility and locomotor activity in mice. Neurosci. Lett. 487. 302-304.

  36. Kondaurova E.M., Naumenko V.S., Sinyakova N.A., Kulikov A.V. 2011. Map3k1, Il6st, Gzmk, and Hspb3 gene coexpression network in the mechanism of freezing reaction in mice. J. Neurosci. Res. 89, 267–273.

    Article  PubMed  CAS  Google Scholar 

  37. Iancu O.D., Darakjian P., Malmanger B., Walter N.A., McWeeney S., Hitzemann R. 2011. Gene networks and haloperidol-induced catalepsy. Genes Brain Behav. 11, 29–37.

    Article  PubMed  Google Scholar 

  38. Iancu O.D., Oberbeck D., Darakjian P., Kawane S., Erk J., McWeeney S., Hitzemann R. 2013. Differential network analysis reveals genetic effects on catalepsy modules. PLoS ONE. 8, e58951–e58959.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Sinyakova.

Additional information

Original Russian Text © N.A. Sinyakova, A.V. Kulikov, 2014, published in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 5, pp. 733–741.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinyakova, N.A., Kulikov, A.V. Expression of genes in the 111.35–116.16 million bp fragment of chromosome 13 in brain of mice with different predisposition to hereditary catalepsy. Mol Biol 48, 638–645 (2014). https://doi.org/10.1134/S0026893314040141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893314040141

Keywords

Navigation