Skip to main content
Log in

Utilization of Dibenzothiophene and Desulfurization of Crude Oil by a New Klebsiella sp. Strain BDS24 and the Proposed Metabolic Pathway

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

A strain capable of efficient biodesulfurization of dibenzothiophene was isolated from oil-contaminated soil samples. The strain, designated BDS24, was a rod-shaped gram-negative bacterium. Molecular identification based on its 16S rDNA gene sequence showed that this strain belonged to the genus Klebsiella. Examining its ability to desulfurize dibenzothiophene by gas chromatography revealed that this isolate consumed 0.5 mM of dibenzothiophene within 72 h. Evaluation of growth characteristics by the tetrazolium chloride assay showed that BDS24 isolate reached its maximum growth in the exponential phase after 60 h of growth with DBT. Compared to the reported 4S metabolic pathway, an extended 4S pathway was proposed for the desulfurization of dibenzothiophene, which has not been formerly reported in the literature. A decrease of 88% of the total sulfur content of crude oil sample by a Klebsiella strain has not been achieved previously. These results indicate that Klebsiella sp. BDS24 is an adequate candidate for deep biodesulfurization of crude oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Akhtar, N., Ghauri, M. A., and Akhtar, K., Exploring coal biodesulfurization potential of a novel organic sulfur metabolizing Rhodococcus spp. (Eu-32)—a case study, Geomicrobiol. J., 2016a, vol. 33, no. 6, pp. 468−472. https://doi.org/10.1080/01490451.2015.1052119

    Article  CAS  Google Scholar 

  2. Akhtar, N., Ghauri, M.A., and Akhtar, K., Dibenzothiophene desulfurization capability and evolutionary divergence of newly isolated bacteria, Arch. Microbiol., 2016b, vol. 198, no. 6, pp. 509–519. https://doi.org/10.1007/S00203-016-1209-5

    Article  CAS  PubMed  Google Scholar 

  3. Akhtar, N., Ghauri, M.A., Anwar, M.A., and Akhtar, K., Analysis of the dibenzothiophene metabolic pathway in a newly isolated Rhodococcus spp., FEMS Microbiol. Lett., 2009, vol. 301, no. 1, pp. 95–102. https://doi.org/10.1111/J.1574-6968.2009.01797.X

    Article  CAS  PubMed  Google Scholar 

  4. Akhtar, N., Akhtar, K., and Ghauri, M.A., Biodesulfurization of thiophenic compounds by a 2-hydroxybiphenyl-resistant Gordonia sp. HS126-4N carrying dszABC genes, Curr. Microbiol., 2018, vol. 75, pp. 597–603. https://doi.org/10.1007/s00284-017-1422-8

    Article  CAS  PubMed  Google Scholar 

  5. Aminsefat, A., Rasekh, B., and Ardakani, M.R., Biodesulfurization of dibenzothiophene by Gordonia sp. AHV-01 and optimization by using of response surface design procedure, Microbiology (Moscow), 2012, vol. 81, no. 2, pp. 154–159. https://doi.org/10.1134/S0026261712020026

    Article  CAS  Google Scholar 

  6. Bhatia, S. and Sharma, D.K., Thermophilic desulfurization of dibenzothiophene and different petroleum oils by Klebsiella sp. 13T, Environ. Sci. Polluti. Res. Int., 2012, vol. 19, no. 8, pp. 3491–3497. https://doi.org/10.1007/S11356-012-0884-2

    Article  CAS  Google Scholar 

  7. Canales, C., Eyzaguirre, J., Baeza, P., Aballay, P., and Ojeda, J., Kinetic analysis for biodesulfurization of dibenzothiophene using R. rhodochrous adsorbed on silica, Ecol. Chem. Eng. S, 2018, vol. 25, no. 4, pp. 549–556. https://doi.org/10.1515/ECES-2018-0036

    Article  CAS  Google Scholar 

  8. Davoodi-Dehaghani, F., Vosoughi, M., and Ziaee, A.A., Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis strain, Biores. Technol., 2010, vol. 101, no. 3, pp. 1102–1105. https://doi.org/10.1016/J.BIORTECH.2009.08.058

  9. Delegan, Y., Kocharovskaya, Y., Frantsuzova, E., Streletskii, R., and Vetrova, A., Characterization and genomic analysis of Gordonia alkanivorans 135, a promising dibenzothiophene-degrading strain. Biotechnol. Rep., 2021, vol. 29. https://doi.org/10.1016/J.BTRE.2021.E00591

  10. Denome, S.A., Olson, E.S., and Young, K.D. Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp. strain IGTS8, Appl. Environ. Microbiol., 1993, vol. 59, no. 9, pp. 2837–2843. https://doi.org/10.1128/AEM.59.9.2837-2843.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Díaz, E. and García, J.L., Genetics engineering for removal of sulfur and nitrogen from fuel heterocycles, in Handbook of Hydrocarbon and Lipid Microbiology, Berlin: Springer, 2010, pp. 2787–2801. https://doi.org/10.1007/978-3-540-77587-4_206

  12. Long, D.-L., Wang, Y.-H., Wang, J.-L., Mu, S.-J., Chen, L., Shi, X.-Q., and Li, J.Q., Fatal community-acquired bloodstream infection caused by Klebsiella variicola: a case report, World J. Clin. Cases., 2022, vol. 10, no. 8, pp. 2474−2483. https://doi.org/10.12998/wjcc.v10.i8.2474

    Article  PubMed  PubMed Central  Google Scholar 

  13. El-Gendy, N.S., Nassar, H.N., and Abu Amr, S.S., Factorial design and response surface optimization for enhancing a biodesulfurization process, Pet. Sci. Technol., 2014, vol. 32, no. 14, pp. 1669–1679. https://doi.org/10.1080/10916466.2014.892988

    Article  CAS  Google Scholar 

  14. Elmi, F., Etemadifar, Z., and Emtiazi, G., A novel metabolite (1,3-benzenediol, 5-hexyl) production by Exophiala spinifera strain FM through dibenzothiophene desulfurization, World J. Microbiol. Biotechnol., 2015, vol. 31, no. 5, pp. 813–821. https://doi.org/10.1007/S11274-015-1835-0

    Article  CAS  PubMed  Google Scholar 

  15. Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap, Evolution, 1985, vol. 39, no. 4, p. 783. https://doi.org/10.2307/2408678

    Article  PubMed  Google Scholar 

  16. Gray, K.A., Mrachkott, G.T., and Squires, C.H., Biodesulfurization of fossil fuels, Curr. Opin. Microbiol., 2003, vol. 6, no. 3, pp. 229–235. https://doi.org/10.1016/S1369-5274(03)00065-1

    Article  CAS  PubMed  Google Scholar 

  17. Gray, K.A., Pogrebinsky, O.S., Mrachko, G.T., Xi, L., Monticello, D.J., and Squires, C.H., Molecular mechanisms of biocatalytic desulfurization of fossil fuels, Nat. Biotechnol.,1996, vol. 14, no. 13, pp. 1705–1709. https://doi.org/10.1038/nbt1296-1705

    Article  CAS  PubMed  Google Scholar 

  18. Gupta, N., Roychoudhury, P.K., and Deb, J.K., Biotechnology of desulfurization of diesel: prospects and challenges, Appl. Microbiol. Biotechnol., 2005, vol. 66, no. 4, pp. 356–366. https://doi.org/10.1007/S00253-004-1755-7

    Article  CAS  PubMed  Google Scholar 

  19. Hayashi, S., Kobayashi, T., and Honda, H., Simple and rapid cell growth assay using tetrazolium violet coloring method for screening of organic solvent tolerant bacteria, J. Biosci. Bioeng., 2003, vol. 96, no. 4, pp. 360–363. https://doi.org/10.1016/S1389-1723(03)90137-X

    Article  CAS  PubMed  Google Scholar 

  20. Izumi, Y., Ohshiro, T., Ogino, H., Hine, Y., and Shimao, M., Selective desulfurization of dibenzothiophene by Rhodococcus erythropolis D-1, Appl. Environ. Microbiol., 1994, vol. 60, no. 1, pp. 223–226. https://doi.org/10.1128/AEM.60.1.223-226.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kodama, K., Co-metabolism of dibenzothiophene by Pseudomonas jianii, Agric. Biol. Chem., 1977, vol. 41, no. 7, pp. 1305–1306.https://doi.org/10.1080/00021369.1977.10862668

    Article  CAS  Google Scholar 

  22. Li, L., Shen, X., Zhao, C., Liu, Q., Liu, X., and Wu, Y., Biodegradation of dibenzothiophene by efficient Pseudomonas sp. LKY-5 with the production of a biosurfactant, Ecotoxicol. Environ. Saf., 2019, vol. 176, pp. 50–57. https://doi.org/10.1016/J.ECOENV.2019.03.070

    Article  CAS  PubMed  Google Scholar 

  23. Martínez, I., El-Said Mohamed, M., Santos, V.E., García, J.L., García-Ochoa, F., and Díaz, E., Metabolic and process engineering for biodesulfurization in Gram-negative bacteria, J. Biotechnol., 2017, vol. 262, pp. 47–55. https://doi.org/10.1016/J.JBIOTEC.2017.09.004

    Article  PubMed  Google Scholar 

  24. McCluskey, C., Quinn, J.P., and McGrath, J.W., An evaluation of three new-generation tetrazolium salts for the measurement of respiratory activity in activated sludge microorganisms, Microb. Ecol., 2005, vol. 49, no. 3, pp. 379–387. https://doi.org/10.1007/S00248-004-0012-Z

    Article  CAS  PubMed  Google Scholar 

  25. Monticello, D.J. and Finnerty, W.R., Microbial desulfurization of fossil fuels, Annu. Rev. Microbiol., 1985, vol. 39, pp. 371–389.https://doi.org/10.1146/ANNUREV.MI.39.100185.002103

    Article  CAS  PubMed  Google Scholar 

  26. Nassar, H.N., Abu Amr, S.S., and El-Gendy, N.S., Biodesulfurization of refractory sulfur compounds in petro-diesel by a novel hydrocarbon tolerable strain Paenibacillus glucanolyticus HN4, Environ. Sci. Pollut. Res., 2020, vol. 28, no. 7, pp. 8102–8116. https://doi.org/10.1007/S11356-020-11090-7

    Article  Google Scholar 

  27. Nazari, F., Kefayati, M.E., and Raheb, J., Isolation, identification, and characterization of a novel chemolithoautotrophic bacterium with high potential in biodesulfurization of natural or industrial gasses and biogas, Energy Sources, 2017, vol. 39, no. 10, pp. 971–977. https://doi.org/10.1080/15567036.2016.1263255

    Article  CAS  Google Scholar 

  28. Oldfield, C., Pogrebinsky, O., Simmonds, J., Olson, E.S., and Kulpa, C.F., Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. strain IGTS8, Microbiology, 1997, vol. 143, no. 9, pp. 2961–2973. https://doi.org/10.1099/00221287143-9-2961

    Article  CAS  PubMed  Google Scholar 

  29. Olmo, C.H.D., Santos, V.E., Alcon, A., and Garcia-Ochoa, F., Production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: influence of operational conditions, Biochem. Eng. J., 2005, vol. 3, no. 22, pp. 229–237. https://doi.org/10.1016/J.BEJ.2004.09.015

    Article  Google Scholar 

  30. Omar, R.A., Verma, N., and Arora, P.K., Sequential desulfurization of thiol compounds containing liquid fuels: adsorption over Ni-doped carbon beads followed by biodegradation using environmentally isolated Bacillus zhangzhouensis, Fuel, 2020, vol. 277, pp. 118−208. https://doi.org/10.1016/J.FUEL.2020.118208

    Article  Google Scholar 

  31. Park, T.H., Cychosz, K.A., Wong-Foy, A.G., Dailly, A., and Matzger, A.J., Gas and liquid phase adsorption in isostructural Cu3[biaryltricarboxylate]2 microporous coordination polymers, Chem. Commun., 2011, vol. 47, no. 5, pp. 1452–1454. https://doi.org/10.1039/C0CC03482G

    Article  CAS  Google Scholar 

  32. Parveen, S., Akhtar, N., Ghauri, M.A., and Akhtar, K., Conventional genetic manipulation of desulfurizing bacteria and prospects of using CRISPR-Cas systems for enhanced desulfurization activity, Crit. Rev. Microbiol., 2020, vol. 46, no. 3, pp. 300–320. https://doi.org/10.1080/1040841X.2020.1772195

    Article  CAS  PubMed  Google Scholar 

  33. Sabaeifard, P., Abdi-Ali, A., Soudi, M.R., and Dinarvand, R., Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method, J. Microbiol. Methods, 2014, vol. 105, pp. 134–140. https://doi.org/10.1016/J.MIMET.2014.07.024

    Article  CAS  PubMed  Google Scholar 

  34. Sadare, O., Obazu, F., and Daramola, M.O., Biodesulfurization of petroleum distillates—current status, opportunities and future challenges, Environments, 2017, vol. 4, no. 4, p. 85. https://doi.org/10.3390/ENVIRONMENTS4040085

    Article  Google Scholar 

  35. Sousa, J.P.M., Ferreira, P., Neves, R.P.P., Ramos, M.J., and Fernandes, P.A., The bacterial 4S pathway—an economical alternative for crude oil desulphurization that reduces CO2 emissions, Green Chem., 2020, vol. 22, no. 22, pp. 7604–7621. https://doi.org/10.1039/D0GC02055A

    Article  CAS  Google Scholar 

  36. Yu, B., Xu, P., Shi, Q., and Ma, C., Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain, Appl. Environ. Microbiol., 2006, vol. 72, no. 1, pp. 54–58. https://doi.org/10.1128/AEM.72.1.54-58.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Zarrini.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emami, F., Zarrini, G. & Kadkhodaie, A. Utilization of Dibenzothiophene and Desulfurization of Crude Oil by a New Klebsiella sp. Strain BDS24 and the Proposed Metabolic Pathway. Microbiology 92, 920–928 (2023). https://doi.org/10.1134/S0026261723600167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261723600167

Keywords:

Navigation