Skip to main content
Log in

Biological Activity of the Endolichenic Trichoderma spp. Isolated from Lichens Cryptothecia spp. and Dirinaria spp.

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Endolichenic fungi are considered a promising source of new materials. For further evaluation of some biological activities of the Trichoderma strains isolated from lichens Dirinaria spp. and Cryptothecia spp., their antifungal and antibacterial activities were screened by the methods of dual culture and environmental toxicity. Substrate degradation was evaluated using the qualitative enzyme assays. Fourteen strains of Trichoderma spp. were isolated from 60 lichen samples. All the isolates were able to inhibit the radial growth of tested fungal strains (Bipolaris spp., Colletotrichum spp., Corynespora cassiicola, and Fusarium spp.). Otherwise, only 12/14 isolates were found capable of competing for substrates with Ralstonia solanacearum. The cell-free supernatant obtained from the cultures possessed both antifungal and antibacterial activities. The antagonistic activity of the isolates was selective. Most of the isolates were able to degrade at least one of the investigated substrates, namely cellulose, pectin, and starch. All strains could produce peroxidase; none of the isolates possessed laccase and tyrosinase. A potential antagonistic fungal strain VDT6 has been identified as Trichoderma harzianum. The assessment results indicated that the Trichoderma isolates could be used in agriculture as biological control agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Al-Samarrai, T.H. and Schmid, J., A simple method for extraction of fungal genomic DNA, Lett. Appl. Microbiol., 2000, vol. 30, pp. 53–56. https://doi.org/10.1046/j.1472-765x.2000.00664.x

    Article  CAS  PubMed  Google Scholar 

  2. Chaverri, P. and Samuels, G.J., Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): Species with Green Ascospores, Utrecht: Centralbureau voor Schimmelcultures, 2003.

    Google Scholar 

  3. Eggins, H.O.W. and Pugh, G.J.F., Isolation of cellulose-decomposing fungi from the soil, Nature, 1962, vol. 193, pp. 94–95. https://doi.org/10.1038/193094a0

    Article  Google Scholar 

  4. Elix, J.A., Cryptothecia, in Flora of Australia. Volume 57: Lichens 5, McCarthy, P.M. and Kuchlmayr, B., Eds., Victoria: CSIRO/ABRS, 2009a, pp. 1–12.

  5. Elix, J.A., Dirinaria, in Flora of Australia. Volume 57: Lichens 5, McCarthy, P.M. and Kuchlmayr, B., Eds., Victoria: CSIRO Publishing/ABRS, 2009b, pp. 509–517.

  6. Ficke, A., Cowger, C., Bergstrom, G., and Brodal, G., Understanding yield loss and pathogen biology to improve disease management: Septoria nodorum blotch—a case study in wheat, Plant Dis., 2018, vol. 102, pp. 696–707. https://doi.org/10.1094/PDIS-09-17-1375-FE

    Article  CAS  PubMed  Google Scholar 

  7. Fujita, S.I., Senda, Y., Nakaguchi, S., and Hashimoto, T., Multiplex PCR using internal transcribed spacer 1 and 2 regions for rapid detection and identification of yeast strains, J. Clin. Microbiol., 2001, vol. 39, pp. 3617–3622. https://doi.org/10.1128/JCM.39.10.3617-3622.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Girlanda, M., Isocrono, D., Bianco, C., and Luppi-Mosca, A.M., Two foliose lichens as microfungal ecological niches, Mycologia, 2008, vol. 89, pp. 531–536. https://doi.org/10.1080/00275514.1997.12026814

    Article  Google Scholar 

  9. Hamzah, T.N.T., Lee, S.Y., Hidayat, A., Terhem, R., Faridah-Hanum, I., and Mohamed, R., Diversity and characterization of endophytic fungi isolated from the tropical mangrove species, Rhizophora mucronata, and identification of potential antagonists against the soil-borne fungus, Fusarium solani, Front. Microbiol., 2018, vol. 9, p. 1707. https://doi.org/10.3389/fmicb.2018.01707

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hong, N.V., Hien, N.T., Minh, N.T.T., and Toan, H.C., Forecasting saline intrusion under the influence of the northeast monsoon in the Mekong Delta, VN J. Hydrometeorol., 2021, vol. 9, pp. 23–36. https://doi.org/10.36335/VNJHM.2021(9).23-36

    Article  Google Scholar 

  11. Kannangara, B.T., Rajapaksha, R.S., and Paranagama, P.A., Nature and bioactivities of endolichenic fungi in Pseudocyphellaria sp., Parmotrema sp. and Usnea sp. at Hakgala montane forest in Sri Lanka, Lett. Appl. Microbiol., 2009, vol. 48, pp. 203–209. https://doi.org/10.1111/j.1472-765X.2008.02512.x

    Article  CAS  PubMed  Google Scholar 

  12. Karthikaidevi, G., Thirumaran, G., Manivannan, K., Anantharaman, P., Kathiresan, K., and Balasubaramanian, T., Screening of the antibacterial properties of lichen Roccella belangeriana (Awasthi) from Pichavaram mangrove (Rhizophora sp.), Adv. Biol. Res., 2009, vol. 3, pp. 127–131.

    Google Scholar 

  13. Kellogg, J.J. and Raja, H.A., Endolichenic fungi: a new source of rich bioactive secondary metabolites on the horizon, Phytochem. Rev., 2016, vol. 16, pp. 271–293. https://doi.org/10.1007/s11101-016-9473-1

    Article  CAS  Google Scholar 

  14. Li, Y., Sun, R., Yu, J., Saravanakumar, K., and Chen, J., Antagonistic and biocontrol potential of Trichoderma asperellum ZJSX5003 against the maize stalk rot pathogen Fusarium graminearum, Indian J. Microbiol., 2016, vol. 56, pp. 318–327. https://doi.org/10.1007/s12088-016-0581-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mejía, L.C., Rojas, E.I., Maynard, Z., Bael, S.V., Arnold, A.E., Hebbar, P., Samuels, G.J., Robbins, N., and Herre, E.A., Endophytic fungi as biocontrol agents of Theobroma cacao pathogens, Biol. Control, 2008, vol. 46, pp. 4–14. https://doi.org/10.1016/j.biocontrol.2008.01.012

    Article  Google Scholar 

  16. Nedialkova, D. and Naidenova, M., Screening the antimicrobial activity of actinomycetes strains isolated from Antarctica, J. Cult. Collect., 2005, vol. 4, pp. 29–35.

    Google Scholar 

  17. Oh, S.Y., Yang, J.H., Woo, J.J., Oh, S.O., and Hur, J.S., Diversity and distribution patterns of endolichenic fungi in Jeju Island, South Korea, Sustainability, 2020, vol. 12, p. 3769. https://doi.org/10.3390/su12093769

    Article  Google Scholar 

  18. Padhi, S. and Tayung, K., In vitro antimicrobial potentials of endolichenic fungi isolated from thalli of Parmelia lichen against some human pathogens, Beni-Suef Univ. J. Basic Appl. Sci., 2015, vol. 4, pp. 299–306. https://doi.org/10.1016/j.bjbas.2015.11.006

  19. Petrini, O., Hake, U., and Dreyfuss, M.M., An analysis of fungal communities isolated from fruticose lichens, Mycologia, 1990, vol. 82, pp. 444–451. https://doi.org/10.1080/00275514.1990.12025907

    Article  Google Scholar 

  20. Stalpers, J.A., Identification of Wood-Inhabiting Fungi in Pure Culture, Baarn: Centraalbureau voor Schimmelcultures, 1978.

  21. Suryanarayanan, T.S. and Thirunavukkarasu, N., Endolichenic fungi: the lesser known fungal associates of lichens, Mycology, 2017, vol. 8, pp. 189–196. https://doi.org/10.1080/21501203.2017.1352048

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tripathi, M. and Joshi, Y., Endolichenic Fungi: Present and Future Trends, Singapore: Springer, 2019.

    Book  Google Scholar 

  23. Verma, M., Brar, S.K., Tyagi, R.D., Surampalli, R.Y., and Valéro, J.R., Antagonistic fungi, Trichoderma spp.: panoply of biological control, Biochem. Eng. J., 2007, vol. 37, pp. 1–20. https://doi.org/10.1016/j.bej.2007.05.012

    Article  Google Scholar 

  24. Wheeler, K.A. and Hocking, A.D., Interactions among xerophilic fungi associated with dried salted fish, J. Appl. Bacteriol., 1993, vol. 74, pp. 164–169. https://doi.org/10.1111/j.1365-2672.1993.tb03010.x

    Article  CAS  PubMed  Google Scholar 

  25. Yang, J.H., Oh, S.Y., Kim, W., Woo, J.J., Kim, H., and Hur, J.S., Effect of isolation conditions on diversity of endolichenic fungal communities from a foliose lichen, Parmotrema tinctorum, J. Fungi (Basel), 2021, vol. 7, p. 335. https://doi.org/10.3390/jof7050335

    Article  CAS  Google Scholar 

  26. Yuliar, Nion, Y.A., and Toyota, K., Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum, Microbes Environ., 2015, vol. 30, pp. 1–11. https://doi.org/10.1264/jsme2.ME14144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

N.T. Phu was funded by Vingroup Joint Stock Company and supported by the Domestic Master/Ph.D. Scholarship Programme of Vingroup Innovation Foundation, Institute of Big Data (VNCDLL), code VINIF.2021.ThS.61. The authors would like to acknowledge the Vingroup Innovation Foundation, Institute of Big Data for the financial support.

Funding

This study was supported by the Vingroup Joint Stock Company and the Domestic Master/Ph.D (Project/grant number VINIF.2021.ThS.61), Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. T. Phu or L. T. Son.

Ethics declarations

The authors declare no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phu, N.T., Cam, V.T., Minh, N.T. et al. Biological Activity of the Endolichenic Trichoderma spp. Isolated from Lichens Cryptothecia spp. and Dirinaria spp.. Microbiology 92, 408–417 (2023). https://doi.org/10.1134/S0026261722602093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722602093

Keywords:

Navigation