Skip to main content
Log in

In Vitro Biological Activities of an Endophytic Fungus, Trichoderma sp. L2D2 Isolated from Anaphalis contorta

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The endophytic fungus, Trichoderma sp. L2D2 was isolated from the medicinal plant Anaphalis contorta and has been assessed for extracellular enzyme production, plant growth promotion, antifungal, antibacterial, and antioxidant activities in vitro. The endophyte has been found to produce amylase, cellulose, and ammonia qualitatively. The antifungal activity was evaluated using Curvularia lunata, Fusarium oxysporum, Aspergillus niger, Aspergillus flavus, Sclerotium oryzae, Rhizoctonia solani, Alternaria brassicicola, Colletotrichum capsici, Ustilaginoidea virens, and Alternaria tenuissima by the dual culture method and showed strong antifungal activity with 100% inhibition against S. oryzae and C. capsici. For antibacterial activity, ethyl acetate extract of Trichoderma sp. L2D2 was tested against Bacillus subtilis, Staphylococcus aureus, Enterococcus faecalis, Salmonella typhi, Escherichia coli, and Shigella flexneri by the agar well diffusion method and the 96-well microplate method, and has shown the lowest MIC of 15.62 µg/ml against S. aureus and E. coli. The DPPH assay was used to examine the free radical scavenging activity of the crude extract of the endophytic fungus and showed good antioxidant activity with an IC50 value of 85.94 µg/ml.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References:

  1. Gopi DK, Mattummal R, Narayana SKK, Parameswaran S (2018) IUCN red listed medicinal plants of siddha. J Res Siddha Med 1(1):15

    Article  Google Scholar 

  2. Gowthami R, Sharma N, Pandey R, Agrawal A (2021) Status and consolidated list of threatened medicinal plants of India. Genet Resour Crop Evol 68(6):2235–2263. https://doi.org/10.1007/s10722-021-01199-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bhardwaj A, Agrawal P (2014) A review fungal endophytes: as a store house of bioactive compound. World J Pharm Pharm Sci 3(9):228

    Google Scholar 

  4. Parulekar Berde CV, Rawool PP, Bramhachari PV, Berde VB (2020) Endophytic microbes from medicinal plants and their secondary metabolites for agricultural significances. Plant Microbiomes Sustain Agric. https://doi.org/10.1007/978-3-030-38453-1_4

    Article  Google Scholar 

  5. AboNouh FA (2019) Endophytic fungi for sustainable agriculture. Microb Biosyst 4(1):31–44. https://doi.org/10.21608/MB.2019.38886

    Article  Google Scholar 

  6. Sharma M, Sharma AK, Sharma M (2020) Ethno-botanical study of medicinal plants from unexplored area of District Ramban (J&K) India. Indian J Agric Res 54:1–7

    Google Scholar 

  7. Joshi RK (2013) Essential oil of flowers of Anaphalis contorta, an aromatic and medicinal plant from India. Natl Prod Commun 8(2):1934578X1300800224. https://doi.org/10.1177/1934578X1300800224

    Article  Google Scholar 

  8. Rosset P, Collins J, Lappé FM (2000) Lessons from the green revolution. In: Third world resurgence, pp 11–14

  9. Fontana DC, de Paula S, Torres AG, de Souza VHM, Pascholati SF, Schmidt D, Dourado Neto D (2021) Endophytic fungi: Biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens 10(5):570. https://doi.org/10.3390/pathogens10050570

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ripa FA, Cao WD, Tong S, Sun JG (2019) Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi. BioMed Res Int. https://doi.org/10.1155/2019/6105865

    Article  PubMed  PubMed Central  Google Scholar 

  11. Moretti A, Logrieco AF, Susca A (2017) Mycotoxins: an underhand food problem. Mycotoxigenic Fungi Methods Protoc. https://doi.org/10.1007/978-1-4939-6707-0_1

    Article  Google Scholar 

  12. Poveda J (2021) Trichoderma as biocontrol agent against pests: new uses for a mycoparasite. Biol Control 159:104634. https://doi.org/10.1016/j.biocontrol.2021.104634

    Article  CAS  Google Scholar 

  13. Uttara B, Singh AV, Zamboni P, Mahajan R (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1):65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hallmann J, Berg G, Schulz B (2006) Isolation procedures for endophytic microorganisms. Microb Root Endophytes. https://doi.org/10.1007/3-540-33526-9

    Article  Google Scholar 

  15. Watanabe T (2010) Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species. CRC Press, Boca Raton

    Book  Google Scholar 

  16. Dugan FM, Dugan FM (2006) The identification of fungi: an illustrated introduction with keys, glossary, and guide to literature. APS Press, St. Paul

    Google Scholar 

  17. Khan AR, Ullah I, Waqas M, Shahzad R, Hong SJ, Park GS, Jung BK, Lee IJ, Shin JH (2015) Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World J Microbiol Biotechnol 31:1461–1466. https://doi.org/10.1007/s11274-015-1888-0

    Article  CAS  PubMed  Google Scholar 

  18. Guo LD, Hyde KD, Liew ECY (2000) Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol 147(3):617–630. https://doi.org/10.1046/j.1469-8137.2000.00716.x

    Article  CAS  PubMed  Google Scholar 

  19. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

    Article  CAS  PubMed  Google Scholar 

  20. Rajput K, Chanyal S, Agrawal PK (2016) Optimization of protease production by endophytic fungus, Alternaria alternata isolated from gymnosperm tree-Cupressus torulosa D. Don. World J Pharm Pharm Sci 5:1034–1054. https://doi.org/10.20959/wjpps20167-7137

    Article  CAS  Google Scholar 

  21. Sathish L, Pavithra N, Ananda K (2012) Antimicrobial activity and biodegrading enzymes of endophytic fungi from Eucalyptus. Int J Pharm Sci Res 3(8):2574. https://doi.org/10.13040/IJPSR.0975-8232.3(8).2574-83

    Article  Google Scholar 

  22. Mahfooz M, Dwedi S, Bhatt A, Raghuvanshi S, Bhatt M, Agrawal PK (2017) Evaluation of antifungal and enzymatic potential of endophytic fungi isolated from Cupressus torulosa D. Don. Int J Curr Microbiol App Sci 67:4084–4100

    Article  Google Scholar 

  23. Passari AK, Mishra VK, Leo VV, Gupta VK, Singh BP (2016) Phytohormone production endowed with antagonistic potential and plant growth promoting abilities of culturable endophytic bacteria isolated from Clerodendrum colebrookianum Walp. Microbiol Res 193:57–73. https://doi.org/10.1016/j.micres.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  24. Hajieghrari B, Torabi-Giglou M, Mohammadi MR, Davari M (2008) Biological potantial of some Iranian Trichoderma isolates in the control of soil borne plant pathogenic fungi. Afr J Biotechnol 7(8):1684

    Google Scholar 

  25. Sharma D, Pramanik A, Agrawal PK (2016) Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D. Don. 3 Biotech 6(2):210. https://doi.org/10.1007/s13205-016-0518-3

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rani R, Sharma D, Chaturvedi M, Yadav JP (2017) Antibacterial activity of twenty different endophytic fungi isolated from Calotropis procera and time kill assay. Clin Microbiol 6(3):280. https://doi.org/10.4172/2327-5073.1000280

    Article  CAS  Google Scholar 

  27. Perumal S, Mahmud R, Pillai S, Lee WC, Ramanathan S (2012) Antimicrobial activity and cytotoxicity evaluation of Euphorbia hirta (L.) extracts from Malaysia. APCBEE Proc 2:80–85. https://doi.org/10.1016/j.apcbee.2012.06.015

    Article  CAS  Google Scholar 

  28. Govindappa M, Farheen H, Chandrappa CP, Rai RV, Raghavendra VB (2016) Mycosynthesis of silver nanoparticles using extract of endophytic fungi, Penicillium species of Glycosmis mauritiana, and its antioxidant, antimicrobial, anti-inflammatory and tyrokinase inhibitory activity. Adv Natl Sci Nanosci Nanotechnol 7(3):035014. https://doi.org/10.1088/2043-6262/7/3/035014

    Article  CAS  ADS  Google Scholar 

  29. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109(16):6241–6246. https://doi.org/10.1073/pnas.1117018109

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  30. Shi XS, Wang DJ, Li XM, Li HL, Meng LH, Li X, Pi Y, Zhou XW, Wang BG (2017) Antimicrobial polyketides from Trichoderma koningiopsis QA-3, an endophytic fungus obtained from the medicinal plant Artemisia argyi. RSC Adv 7(81):51335–51342. https://doi.org/10.1039/C7RA11122C

    Article  CAS  ADS  Google Scholar 

  31. Shi XS, Meng LH, Li XM, Li X, Wang DJ, Li HL, Zhou XW, Wang BG (2019) Trichocadinins B-G: antimicrobial cadinane sesquiterpenes from Trichoderma virens QA-8, an endophytic fungus obtained from the medicinal plant Artemisia argyi. J Nat Prod 82(9):2470–2476. https://doi.org/10.1021/acs.jnatprod.9b00139

    Article  CAS  PubMed  Google Scholar 

  32. Kaushik N, Díaz CE, Chhipa H, Julio LF, Andrés MF, González-Coloma A (2020) Chemical composition of an aphid antifeedant extract from an endophytic fungus, Trichoderma sp. EFI671. Microorganisms 8(3):420. https://doi.org/10.3390/microorganisms8030420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harwoko H, Daletos G, Stuhldreier F, Lee J, Wesselborg S, Feldbrügge M, Müller WE, Kalscheuer R, Ancheeva E, Proksch P (2021) Dithiodiketopiperazine derivatives from endophytic fungi Trichoderma harzianum and Epicoccum nigrum. Natl Prod Res 35(2):257–265. https://doi.org/10.1080/14786419.2019.1627348

    Article  CAS  Google Scholar 

  34. Chen L, Niu SB, Li L, Ding G, Yu M, Zhang GS, Wang MH, Li LY, Zhang T, Jia HM, Zou ZM (2017) Trichoderpyrone, a unique polyketide hybrid with a cyclopentenone–pyrone skeleton from the plant endophytic fungus Trichoderma gamsii. J Nat Prod 80(6):1944–1947. https://doi.org/10.1021/acs.jnatprod.7b00190

    Article  CAS  PubMed  Google Scholar 

  35. Liu Z, Sun Y, Tang M, Sun P, Wang A, Hao Y, Wang Y, Pei Y (2020) Trichodestruxins A–D: cytotoxic cyclodepsipeptides from the endophytic fungus Trichoderma harzianum. J Nat Prod 83(12):3635–3641. https://doi.org/10.1021/acs.jnatprod.0c00808

    Article  CAS  PubMed  Google Scholar 

  36. Han M, Qin D, Ye T, Yan X, Wang J, Duan X, Dong J (2019) An endophytic fungus from Trichoderma harzianum SWUKD3. 1610 that produces nigranoic acid and its analogues. Natl Prod Res 33(14):2079–2087. https://doi.org/10.1080/14786419.2018.1486311

    Article  CAS  Google Scholar 

  37. Li W, Xu J, Li F, Xu L, Li C (2016) A new antifungal isocoumarin from the endophytic fungus Trichoderma sp. 09 of Myoporum bontioides A. gray. Pharmacogn Mag 12(48):259. https://doi.org/10.4103/0973-1296.192204

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  38. Mandal S, Banerjee D (2019) Proteases from endophytic fungi with potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi: diversity and enzymes perspectives, vol 1. Springer, Cham, pp 319–359. https://doi.org/10.1007/978-3-030-10480-1_10

    Chapter  Google Scholar 

  39. Zhang Q, Han Y, Xiao H (2017) Microbial α-amylase: a biomolecular overview. Process Biochem 53:88–101. https://doi.org/10.1016/j.procbio.2016.11.012

    Article  CAS  Google Scholar 

  40. Behera BC, Sethi BK, Mishra RR, Dutta SK, Thatoi HN (2017) Microbial cellulases–diversity and biotechnology with reference to mangrove environment: a review. J Genet Eng Biotechnol 15(1):197–210. https://doi.org/10.1016/j.jgeb.2016.12.001

    Article  CAS  PubMed  Google Scholar 

  41. Poveda J, Eugui D, Abril-Urías P, Velasco P (2021) Endophytic fungi as direct plant growth promoters for sustainable agricultural production. Symbiosis 85(1):1–19. https://doi.org/10.1007/s13199-021-00789-x

    Article  CAS  Google Scholar 

  42. Adnan M, Alshammari E, Ashraf SA, Patel K, Lad K, Patel M (2018) Physiological and molecular characterization of biosurfactant producing endophytic fungi Xylaria regalis from the cones of Thuja plicata as a potent plant growth promoter with its potential application. BioMed Res Int. https://doi.org/10.1155/2018/7362148

    Article  PubMed  PubMed Central  Google Scholar 

  43. Carro-Huerga G, Compant S, Gorfer M, Cardoza RE, Schmoll M, Gutiérrez S, Casquero PA (2020) Colonization of Vitis vinifera L. by the endophyte Trichoderma sp. strain T154: biocontrol activity against Phaeoacremonium minimum. Front Plant Sci 11:1170. https://doi.org/10.3389/fpls.2020.01170

    Article  PubMed  PubMed Central  Google Scholar 

  44. Toghueo RMK, Eke P, Zabalgogeazcoa Í, de Aldana BRV, Nana LW, Boyom FF (2016) Biocontrol and growth enhancement potential of two endophytic Trichoderma spp. from Terminalia catappa against the causative agent of common bean root rot (Fusarium solani). Biol Control 96:8–20. https://doi.org/10.1016/j.biocontrol.2016.01.008

    Article  Google Scholar 

  45. Vijitrpanth A, Jantasorn A, Dethoup T (2023) Potential and fungicidal compatibility of antagonist endophytic Trichoderma spp. from rice leaves in controlling dirty panicle disease in intensive rice farming. Biocontrol 68(1):61–73. https://doi.org/10.1007/s10526-022-10161-7

    Article  CAS  Google Scholar 

  46. Nuankeaw K, Chaiyosang B, Suebrasri T, Kanokmedhakul S, Lumyong S, Boonlue S (2020) First report of secondary metabolites, violaceol I and violaceol II produced by endophytic fungus, Trichoderma polyalthiae and their antimicrobial activity. Mycoscience 61(1):16–21. https://doi.org/10.1016/j.myc.2019.10.001

    Article  Google Scholar 

  47. Sarsaiya S, Jain A, Fan X, Jia Q, Xu Q, Shu F, Zhou Q, Shi J, Chen J (2020) New insights into detection of a dendrobine compound from a novel endophytic Trichoderma longibrachiatum strain and its toxicity against phytopathogenic bacteria. Front Microbiol 11:337. https://doi.org/10.3389/fmicb.2020.00337

    Article  PubMed  PubMed Central  Google Scholar 

  48. Velasco P, Rodríguez VM, Soengas P, Poveda J (2021) Trichoderma hamatum increases productivity, glucosinolate content and antioxidant potential of different leafy brassica vegetables. Plants 10(11):2449. https://doi.org/10.3390/plants10112449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The author(s) received no financial support for the authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kistu Singh Nongthombam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nongthombam, K.S., Mutum, S.S. & Pandey, R.R. In Vitro Biological Activities of an Endophytic Fungus, Trichoderma sp. L2D2 Isolated from Anaphalis contorta. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01232-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01232-7

Keywords

Navigation