Skip to main content
Log in

Functional State of Coelastrella multistriata (Sphaeropleales, Chlorophyta) in an Enrichment Culture

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The functional state of an enrichment culture of a green alga Coelastrella multistriata (Trenkwalder) Kalina et Puncochárová in the course of 60-day cultivation was studied. The concentrations of chlorophylls a, b, and c, total carotenoids, protein, vitamins A and E were determined. The rates of lipid peroxide oxidation in the cells of C. multistriata strain MZ–Ch23 were determined using the concentrations of peroxidation products reacting with 2-thiobarbituric acid. The concentrations of these products were determined in the algal biomass on days 15, 25, and 60 of cultivation in the BBM medium, as well as after initiation of peroxide oxidation with Fe2+. Among the photosynthetic pigments, the highest content (14.82 mg/g dry biomass) was shown for chlorophyll a during the exponential growth phase. The total amount of carotenoids was comparable to the values for other studied Coelastrella strains, 0.74–4.21% of the dry biomass. Strain MZ–Ch23 was shown to accumulate high concentrations of retinol (170.49–586.09 µg/L of the algal culture) and protein (141.81–212.38 mg/L). While during all phases of the cultivation C. multistriata cells exhibited low concentrations of the products of lipid peroxide oxidation (0.005–0.015 nmol/mg protein), initiation of peroxide oxidation increased the concentration of TBA-active products up to 0.187 nmol/mg protein on day 60. Cultivation in BBM medium for 25 days proved to be the optimal strategy for obtaining C. multistriata biomass enriched with secondary metabolites and resistant to peroxide oxidation. This resulted in significant amounts of the biomass with high levels of carotenoids, protein, and vitamin A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Abe, K., Hattori, H., and Hirano, M., Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata, Food Chem., 2007, vol. 100, pp. 656–661. https://doi.org/10.1016/j.foodchem.2005.10.026

    Article  CAS  Google Scholar 

  2. Bischoff, H.W. and Bold, H.C., Phycological Studies IV. Some Soil Algae from Enchanted Rock And Related Algal Species, Univ. of Texas Publication 6318, 1963.

  3. Blankenship, R.E., Molecular Mechanisms of Photosynthesis, Hoboken: Wiley Blackwell, 2002.

    Book  Google Scholar 

  4. Chodat, R., Matériaux pour l’histoire des algues de la Suisse, Bulletin de la Société Botanique de Geneve, série 2, 1922, vol. 13, pp. 66–114.

    Google Scholar 

  5. DellaPenna, D. and Pogson B.J., Vitamin synthesis in plants: tocopherols and carotenoids, Annu. Rev. Plant Biol., 2006, vol. 57, pp. 711–738. https://doi.org/10.1146/annurev.arplant.56.032604.144301

    Article  CAS  PubMed  Google Scholar 

  6. Del Mondo, A., Smerilli, A., Sané, E., Sansone, C., and Brunet, C., Challenging microalgal vitamins for human health, Microb. Cell Fact, 2020, vol. 19. 201. https://doi.org/10.1186/s12934-020-01459-1

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dere, Ş., Güneş, T., and Sivaci R., Spectrophotometric determination of chlorophyll—A, B and total caretenoid contents of some algae species using different solvents, Tr. J. of Botany, 1998, vol. 22, pp. 13–17.

    Google Scholar 

  8. Galván, I., Evidence of evolutionary optimization of fatty acid length and unsaturation, J. Evol. Biol., 2017, vol. 31, pp. 172–176. https://doi.org/10.1111/jeb.13198

    Article  CAS  PubMed  Google Scholar 

  9. Gamliel, A., Afri, M., and Frimer, A.A., Determining radical penetration of lipid bilayers with new lipophilic spin traps, Free Radical Biology and Medicine, 2008, vol. 44, pp. 1394–1405. https://doi.org/10.1016/j.freeradbiomed.2007.12.028

    Article  CAS  PubMed  Google Scholar 

  10. Garg, N. and Manchanda, G., ROS generation in plants: boon or bane?, Plant Biosyst., 2009, vol. 143, pp. 81–96. https://doi.org/10.1080/11263500802633626

    Article  Google Scholar 

  11. Hecker, M. and Völker, U., General stress response of Bacillus subtilis and other bacteria, Adv. Microb. Physiol., 2001, vol. 44, pp. 35–91. https://doi.org/10.1016/S0065-2911(01)44011-2

    Article  CAS  PubMed  Google Scholar 

  12. Hossu, A.-M., Rădulescu, C., Ilie, M, Bălălău, D., and Magearu, V., Qualitative and semiquantitative TLC analysis of vitamins A, D and E, Revista de Chimie, 2006, vol. 57, pp. 1188–1189.

    CAS  Google Scholar 

  13. Hu, C.-W., Chuang, L.-T., Yu, P.C., and Chen, C.-N.N., Pigment production by a new thermotolerant microalga Coelastrella sp. F50, Food Chem. 2013, vol. 138, pp. 2071–2078. https://doi.org/10.1016/j.foodchem.2012.11.133

    Article  CAS  PubMed  Google Scholar 

  14. Imdad, A., Mayo-Wilson, E., Herzer, K., and Bhutta, Z.A., Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age, Cochrane Database of Systematic Reviews, 2017, CD008524 https://doi.org/10.1002/14651858.cd008524.pub3

  15. İşeri, Ö.D., Körpe, D.A., Yurtcu, E., Sahin, F.I., and Haberal, M., Copper-induced oxidative damage, antioxidant response and genotoxicity in Lycopersicum esculentum Mill. and Cucumis sativus L., Plant. Cell. Rep., 2011, vol. 30. 1713. https://doi.org/10.1007/s00299-011-1079-x

    Article  CAS  PubMed  Google Scholar 

  16. Jain, A., Jain, R., and Jain, S., Basic Techniques in Biochemistry, Microbiology and Molecular Biology, New York: Springer, 2020. https://doi.org/10.1007/978-1-4939-9861-6

  17. Jeffrey, S.W. and Humphrey, G.F., New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton, Biochem. Physiol. Pflanzen., 1974, vol. 167, pp. 191–194. https://doi.org/10.1016/S0015-3796(17)30778-3

    Article  Google Scholar 

  18. Jeffrey, S., Wright, S., and Zapata, M., Microalgal classes and their signature pigments, in Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography (Cambridge Environmental Chemistry Series), Roy, S., Llewellyn, C., Egeland, E., and Johnsen, G., Eds., Cambridge: Cambridge Univ. Press, 2011, p. 3. Kaur, G., Alam, M.S., Jabbar, Z., Javed, K., and Athar, M., Evaluation of antioxidant activity of Cassia siamea flowers, J. Ethnopharmacol., 2006, vol. 108, pp. 340–348. https://doi.org/10.1016/j.jep.2006.05.021

  19. Lang, I., Hodac, L., Friedl, T., and Feussner, I., Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection, BMC Pl. Biol., 2011, vol. 11. 124. https://doi.org/10.1186/1471-2229-11-124

    Article  CAS  Google Scholar 

  20. Li, X., Yang, W.L., He, H., Wu, S., Zhou, Q., Yang, C., Z-eng, G., Lou, L., and Lou, W., Responses of microalgae Coelastrella sp. to stress of cupric ions in treatment of anaerobically digested swine wastewater, Bioresource Technol., 2018, vol. 251, pp. 274–279. https://doi.org/10.1016/j.biortech.2017.12.058

    Article  CAS  Google Scholar 

  21. Maltsev, Y.I., Konovalenko, T.V., Barantsova, I.A., Maltseva, I.A., and Maltseva, K.I., Prospects of using algae in biofuel production, Regul. Mech. Biosyst., 2017, vol. 8, pp. 455–460. https://doi.org/10.15421/021770

    Article  Google Scholar 

  22. Maltsev, Y.I., Maltseva, I.A., Kulikovskiy, M.S., Maltseva, S.Yu., and Sidorov, R.A., Analysis of a new strain of Pseudomuriella engadinensis (Sphaeropleales, Chlorophyta) for possible use in biotechnology, Russ. J. Plant Physiol., 2019, vol. 66, pp. 609–617. https://doi.org/10.1134/S1021443719040083

    Article  CAS  Google Scholar 

  23. Maltsev, Y., Krivova, Z., Maltseva, S., Maltseva, K., Gorshkova, E., and Kulikovskiy, M., Lipid accumulation by Coelastrella multistriata (Scenedesmaceae, Sphaeropleales) during nitrogen and phosphorus starvation, Sci. Rep., 2021a, vol. 11, article 19818. https://doi.org/10.1038/s41598-021-99376-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maltsev, Y., Maltseva, I., Maltseva, S., Kociolek, J.P., and Kulikovskiy, M., A new species of freshwater algae Nephrochlamys yushanlensis sp. nov. (Selenastraceae, Sphaeropleales) and its lipid accumulation during nitrogen and phosphorus starvation, J. Phycol., 2021c, vol. 57, pp. 606–618. https://doi.org/10.1111/jpy.13116

    Article  CAS  PubMed  Google Scholar 

  25. Maltsev, Y., Maltseva, K., Kulikovskiy, M., and Maltseva, S., Influence of light conditions on microalgae growth and content of lipids, carotenoids and fatty acid composition, Biology, 2021b, vol. 10. 1060. https://doi.org/10.3390/biology10101060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Minyuk, G., Chelebieva, E., Chubchikova, I., Dantsyuk, N., Drobetskaya, I., Sakhon, E., Chekanov, K., and Solovchenko, A., Stress-induced secondary carotenogenesis in Coelastrella rubescens (Scenedesmaceae, Chlorophyta), a producer of value-added keto-carotenoids, Algae, 2017, vol. 32, pp. 245–259. https://doi.org/10.4490/algae.2017.32.8.6

    Article  CAS  Google Scholar 

  27. Minyuk, G., Chelebieva, E., Chubchikova, I., Dantsyuk, N., Drobetskaya, I., Sakhon, E., Chivkunova, O., Chekanov, K., Lobakova, E., Sidorov, R., and Solovchenko, A., pH and CO2 effects on Coelastrella (Scotiellopsis) rubescens growth and metabolism, Russ. J. Plant Physiol., 2016, vol. 63, pp. 566–574. https://doi.org/10.1134/S1021443716040105

    Article  CAS  Google Scholar 

  28. Mokrosnop, V.M. and Zolotareva, E.K., Microalgae as tocopherol producers, Biotechnologia Acta, 2014, vol. 7, pp. 26–33.

    Article  CAS  Google Scholar 

  29. Mudimu, O., Koopmann, I.K., Rybalka, N., Friedl, T., Schulz, R., and Bilger, W., Screening of microalgae and cyanobacteria strains for α-tocopherol content at different growth phases and the influence of nitrate reduction on α-tocopherol production, J. Appl. Phycol., 2017, vol. 29, pp. 2867–2875. https://doi.org/10.1007/s10811-017-1188-1

    Article  CAS  Google Scholar 

  30. Novakovskaya, I.V., Egorova, I.N., Kulakova, N.V., Patova, E.N., Shadrin, D.M., and Anissimova, O.V., Morphological and phylogenetic relations of members of the genus Coelastrella (Scenedesmaceae, Chlorophyta) from the Ural and Khentii Mountains (Russia, Mongolia), Phytotaxa, 2021, vol. 527, pp. 1–20. https://doi.org/10.11646/phytotaxa.527.1.1

    Article  Google Scholar 

  31. Pamplona, R., Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity, Biochim. Biophys. Acta (BBA)–Bioenergetics, 2008, vol. 1777, pp. 1249–1262. https://doi.org/10.1016/j.bbabio.2008.07.003

    Article  CAS  Google Scholar 

  32. Pérez-Pérez, M.E., Lemaire, S.D., and Crespo, J.L., Reactive oxygen species and autophagy in plants and algae, Plant Physiol., 2012, vol. 160, pp. 156–164. https://doi.org/10.1104/pp.112.199992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rijstenbil, J.W., Assessment of oxidative stress in the planktonic diatom Thalassiosira pseudonana in response to UVA and UVB radiation, J. Plankton Res., 2002, vol. 24, pp. 1277–1288.

    Article  CAS  Google Scholar 

  34. Santiago-Morales, I.S., Trujillo-Valle, L., Márquez-Rocha, F.J., and Hernández, J.F.L., Tocopherols, phycocyanin and superoxide dismutase from microalgae: as potential food antioxidants, Appl. Food Biotechnol., 2018, vol. 5, pp. 19–27. https://doi.org/10.22037/afb.v5i1.17884

    Article  CAS  Google Scholar 

  35. Sies, H., Stahl, W., and Sundquist, A.R., Antioxidant functions of vitamins, Ann. New York Acad. Sci., 1992, vol. 669, pp. 7–20. https://doi.org/10.1111/j.1749-6632.1992.tb17085.x

    Article  CAS  Google Scholar 

  36. Smerilli, A., Orefice, I., Corato, F., Olea, A.G., Ruban, A.V., and Brunet, C., Photoprotective and antioxidant responses to light spectrum and intensity variations in the coastal diatom Skeletonema marinoi, Environ. Microbiol., 2016, vol. 19, pp. 611–627. https://doi.org/10.1111/1462-2920.13545

    Article  CAS  PubMed  Google Scholar 

  37. Toti, E., Chen, C.-Y.O., Palmery, M., Valencia, D.V., and Peluso, I., Non-provitamin A and provitamin A carotenoids as immunomodulators: recommended dietary allowance, therapeutic index, or personalized nutrition?, Oxidative Medicine and Cellular Longevity, 2018, article 4637861. https://doi.org/10.1155/2018/4637861

  38. Wang, T.-Y., Libardo, M.D.J., Angeles-Boza, A.M., and Pellois, J.-P., Membrane oxidation in cell delivery and cell killing applications, ACS Chem. Biol., 2017, vol. 12, pp. 1170–1182. https://doi.org/10.1021/acschembio.7b00237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wright, A.H., DeLong, J.M., Gunawardena, A.H.L.A.N., and Prange, R.K., The interrelationship between the lower oxygen limit, chlorophyll fluorescence and the xanthophyll cycle in plants, Photosynth. Res., 2011, vol. 107, pp. 223–235. https://doi.org/10.1007/s11120-011-9621-9

    Article  CAS  PubMed  Google Scholar 

  40. Zeb, A. and Ullah, F., A simple spectrophotometric method for the determination of thiobarbituric acid reactive substances in fried fast foods, J. Anal. Meth. Chem., 2016. 9412767. https://doi.org/10.1155/2016/9412767

Download references

Funding

The biochemical research was supported by the Russian Science Foundation, project no. 20-74-10076. Light microscopy was obtained within the state assignment of the Ministry of Science and Higher Education of the Russian Federation (theme No. 122042700045-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. I. Maltsev.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors.

The authors declare that they have no conflicts of interest.

Additional information

Translated by P. Sigalevich

Abbreviation: ROS, reactive oxygen species; Car, carotenoid content; TBAaP, products of peroxide lipid oxidation determined with thiobarbituric acid (TBA-active products); Chl a, chlorophyll a; Chl b, chlorophyll b; Chl c, chlorophyll c.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maltseva, S.Y., Kulikovskiy, M.S. & Maltsev, Y.I. Functional State of Coelastrella multistriata (Sphaeropleales, Chlorophyta) in an Enrichment Culture. Microbiology 91, 523–532 (2022). https://doi.org/10.1134/S0026261722601385

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722601385

Keywords:

Navigation