Skip to main content
Log in

Phototrophic Communities of the Berikei Highly Mineralized Mesothermal Sulfide Springs (Dagestan, Russia)

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Phototrophic communities forming in the bottom of the Berikei highly mineralized mesothermal sulfide springs (Kayakent region, Dagestan, Russia) were investigated. The Berikei springs are an interesting example of combined effect of such factors as temperature, salinity, pH, and sulfide of occurrence and structure of phototrophic microbial communities. The water was of the sodium chloride type with salinity of 48‒97 g/L, near-neutral brine pH, and sulfide concentration of ~1 mM. The temperature at the stream bottom was as high as 60°C. Elevated temperature and high salinity limited the development of phototrophic communities. Formation of cyanobacterial mats occurred at temperatures below 54°C. Phormidium-like cyanobacteria and unicellular Synechocystis sp. predominated in the mats. The number of cyanobacterial species increased at desalination to 48‒57 g/L with emergence of the species morphologically resembling Spirulina sp., Leptolyngbya sp., and Oscillatoria sp. Among anoxygenic phototrophic bacteria, halophilic purple bacteria Ectothiorhodospira sp., Marichromatium sp., and Rhodovulum sp., green sulfur bacteria Prosthecochloris sp., and unidentified Chloroflexi were present. Oxygenic photosynthesis in the mats was not inhibited by sulfide. Production of cyanobacterial mats was up to 4.7‒53.8 µg/(cm2 h). The contribution of anoxygenic phototrophic bacteria to photosynthetic production varied from 0 to 100%. The composition of this microbial community was compared to those of the phototrophic microbial communities of the mesothermal springs of the Dead Sea coast (Israel), the Washington warm lake (United States), and the Paoha Island hot springs (Mono Lake, United States.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Alexander, B., Andersen, J., Cox, R., and Imhoff, J., Phylogeny of green sulfur bacteria on the basis of gene sequences of 16S rRNA and of the Fenna‒Matthews‒Olson protein, Arch. Microbiol., 2002, vol. 178, pp. 131–140.

    Article  CAS  PubMed  Google Scholar 

  2. Béjà, O., Suzuki, M.T., Heidelberg, J.F., Nelson, W.C., Preston, C.M., Hamada, T., Eisen, J.A., Fraser, C.M., and De Long, E.F., Unsuspected diversity among marine aerobic anoxygenic phototrophs, Nature, 2002, vol. 415, no. 6872, pp. 630–633.

    Article  PubMed  Google Scholar 

  3. Castenholz, R.W., The possible photosynthetic use of sulfide by the filamentous phototrophic bacteria of hot springs, Limnol. Oceanogr., 1973, vol. 18, pp. 863–876.

    Article  CAS  Google Scholar 

  4. Cohen, Y., Krumbein, W.E., and Shilo, M., Solar Lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production 1, Limnol. Oceanogr., 1977, vol. 22, pp. 609–620.

    Article  CAS  Google Scholar 

  5. Deinega, G.I., Dependence of underground water dynamics and chemism on seismic activity, Trudy Inst. Geol., Dagestan Branch, AN USSR, 1978, p. 10.

    Google Scholar 

  6. Fedorov, V.D., O metodakh izucheniya phitoplanktona i ego aktivnosti (On methods of investigation of phytoplankton and its activity), Moscow: Mos. Gos. Univ., 1979.

    Google Scholar 

  7. Gorlenko, V.M., Ecological niches of green sulfur and gliding bacteria, in Green Photosynthetic Bacteria, Olson, J.M., Ormerod, J.G., Amesz, J., et al. Eds., New York: Plenum, 1988, pp. 257–268.

  8. Gorlenko, V.M., Anoxygenic phototrophic bacteria of soda lakes, Proc. Winogradsky Inst. Microbiol., vol. 14, Alkaliphilic Microbial Communities, Gal’chenko, V.F., Ed., Moscow: Nauka, 2007, pp. 225–257.

  9. Imhoff, J.F., True marine and halophilic anoxygenic phototrophic bacteria, Arch. Microbiol., 2001, vol. 176, pp. 243–254.

    Article  CAS  PubMed  Google Scholar 

  10. Imhoff, J.F. and Süling, J., The phylogenetic relationship among Ectothiorhodospiraceae: a reevaluation of their taxonomy on the basis of 16S rDNA analyses, Arch. Microbiol., 2001, vol. 165, pp. 106–113.

    Article  Google Scholar 

  11. Imhoff, J.F. and Truper, H.G., Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b, Arch. Microbiol., 1977, vol. 114, pp. 115–121.

    Article  CAS  Google Scholar 

  12. Klappenbach, J.A. and Pierson, B.K., Phylogenetic and physiological characterization of a filamentous anoxygenic photoautotrophic bacterium “Candidatus Chlorothrix halophila” gen. nov., sp. nov., recovered from hypersaline microbial mats, Arch. Microbiol., 2004, vol. 181, pp. 17–25.

    Article  CAS  PubMed  Google Scholar 

  13. Krumbein, W.E., Cohen, Y., and Shilo, M., Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats, Limnol. Oceanogr., 1977, vol. 22, pp. 635–656.

    Article  CAS  Google Scholar 

  14. Kuntikov, E.I. and Gorlenko, V.M., Interrelation between halo- and thermotolerance in anoxygenic phototrophic bacteria, Microbiology (Moscow), 1998, vol. 67, no. 3, pp. 245–250.

    CAS  Google Scholar 

  15. Kurbanov, M.K., Geotermal’nye i gidromineral’nye resursy Vostochnogo Kavkaza i Predkavkaz’ya (Geothermal and Hydromineral Resources of Eastern Caucasus and Ciscaucasia), Moscow: Nauka, 2001.

  16. Kuznetsov, S.I. and Dubinina, G.A., Metody izucheniya vodnykh mikroorganizmov (Methods for Investigation of Aquatic Microorganisms), Moscow: Nauka, 1989.

  17. Oren, A., Kessel, M., and Stackebrandt, E., Ectothiorhodospira marismortui sp. nov., an obligately anaerobic, moderately halophilic purple sulfur bacterium from a hypersaline sulfur spring on the shore of the Dead Sea, Arch. Microbiol., 1989, vol. 151, pp. 524–529.

    Article  CAS  Google Scholar 

  18. Pel’sh, A.D., On photosynthetic bacteria of the Saky Lake eastern basin, Mikrobiologiya, 1937, vol. 6, no. 8, pp. 1092–1100.

    Google Scholar 

  19. Pfennig, N., Anreicherungskulturen für rote und grüne Schwefelbakterien, Zb. Bakt., 1. Abt. Orig. Suppl., 1965, no. 1, pp. 503–504.

  20. Pfennig, N. and Lippert, K.D., Über das vitamin B12-bedürfnis phototropher Schwefelbakterien, Arch. Microbiol., 1966, vol. 55, pp. 245–256.

    CAS  Google Scholar 

  21. Reznikov, A.A., Mulikovskaya, E.P., and Soklolv, I.Yu., Metody analiza prirodnykh vod (Methods for Analysis of Natural Waters), Moscow: Nedra, 1970.

  22. Starynin, D.A., Gorlenko, V.M., Kompantseva, E.I., Kachalkin, V.I., and Chebotarev, E.N., On the patterns of carbon and sulfur turnover in a Talgi-W high-sulfate spring, Dagestan ASSR, Izv. AN SSSR, Ser. Biol., 1990, no. 5, pp. 749–758.

  23. Takahashi, M. and Ichimura, S., Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes, Limnol. Oceanogr., 1968, vol. 13, pp. 644–655.

    Article  Google Scholar 

  24. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S., MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, pp. 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thiel, V., Drautz-Moses, D.I., Purbojati, R.W., Schuster, S.C., Lindemann, S., and Bryant, D.A., Genome sequence of Prosthecochloris sp. strain HL-130-GSB from the phylum Chlorobi, Genome Announc., 2017, vol. 5, no. 24, pp. 1‒2.

    Google Scholar 

  26. Wright, E.S., Yilmaz, L.S., and Noguera, D.R., DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences, Appl. Environ. Microbiol., 2012, vol. 78, pp. 717–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to their colleagues and students who participated in the field research of microbial mats of the Berikei springs.

This work was financially supported by the Presidium of the Russian Academy of Sciences via the program “Evolution of the Organic World and Planet-Scale Processes” (Subprogram 2) and by the Russian Foundation for Basic Research project nos. 16-04-00830 and 19-04-00423 and the Ministry of Science and Higher Education of the Russian Federation. DNA sequencing was partially performed using the equipment of the Collective Use Center “Bioengineering” of the Federal Research Center of Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Gorlenko.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorlenko, V.M., Burganskaya, E.I. & Bryantseva, I.A. Phototrophic Communities of the Berikei Highly Mineralized Mesothermal Sulfide Springs (Dagestan, Russia). Microbiology 88, 146–155 (2019). https://doi.org/10.1134/S0026261719020048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261719020048

Keywords:

Navigation