Skip to main content

Advertisement

Log in

Geomicrobial dynamics of Trans-Himalayan sulfur–borax spring system reveals mesophilic bacteria’s resilience to high heat

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Geomicrobiology of sulfur–boron-dominated, neutral-pH hydrothermal systems was revealed in a Trans-Himalayan spring named Lotus Pond, located at 4436 m, in Puga Valley, Ladakh (India), where water boils at 85°C. Water sampled along Lotus Pond’s outflow (vent to an adjacent river called Rulang), representing an 85–14°C gradient, had high microbial diversity and boron/chloride/sodium/sulfate/thiosulfate concentration; potassium/silicon/sulfide/sulfite was moderately abundant, whereas cesium/lithium small but definite. Majority of the bacterial genera identified in the 85–72°C samples have no laboratory-growth reported at >45°C, and some of those mesophiles were culturable. Sulfur-species concentration and isotope-ratio along the hydrothermal gradient, together with the distribution of genera having sulfur-oxidizing members, indicated chemolithotrophic activities in the 85–72°C sites. While biodiversity increased in the vent-to-river trajectory all-day, maximum rise was invariably between the vent (85–81°C) and the 78–72°C site; below 72°C, diversity increased gradually. Biodiversity of the vent-water exhibited diurnal fluxes relatable to the sub-surface-processes-driven temporal fluxes in physicochemical properties of the discharge. Snow-melts infiltrating (via tectonic faults) the ~160°C geothermal reservoir located within the breccia, at ~450 m depth, apparently transport mesophilic microbes into the thermal waters. As these micro-organisms emanate with the vent-water, some remain alive, illustrating that natural bacterial populations are more heat-resilient than their laboratory counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

HTP:

Highest temperature point

MTP:

Moderately-high temperature point

LTP:

Lowest temperature point

RVW:

River water

ICPMS:

Inductively coupled plasma mass spectrometry

VCDT:

Vienna Canyon Diablo Troilite

IAEA:

International Atomic Energy Agency

EDTA:

Ethylenediaminetetraacetic acid

PCR:

Polymerase chain reaction

OTUs:

Operational taxonomic units

RDP:

Ribosomal Database Project

R2A:

Reasoner’s 2A

MMST:

Modified basal mineral salt medium supplemented with thiosulfate

LB:

Luria broth

References

  • Absar A, Kumar V, Bajpai I P, Sinha A K and Kapoor A 1996 Reservoir modelling of Puga geothermal system, Ladakh, Jammu and Kashmir; Geol. Surv. India Spec. Publ. 45 69–74.

    Google Scholar 

  • Alam M, Pyne P, Mazumdar A, Peketi A and Ghosh W 2013 Kinetic enrichment of 34S during proteobacterial thiosulfate oxidation and the conserved role of SoxB in S–S bond breaking; Appl. Environ. Microbiol. 79 4455–4464.

    Google Scholar 

  • Amenabar M J and Boyd E S 2019 A review of the mechanisms of mineral-based metabolism in early Earth analog rock-hosted hydrothermal ecosystems; World. J. Microb. Biot. 35 29.

    Google Scholar 

  • Amend J P and Shock E L 2001 Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria; FEMS Microbiol. Rev. 25 175–243.

    Google Scholar 

  • Arce-Rodríguez A, Puente-Sánchez F, Avendaño R, Martínez-Cruz M, de Moor J M, Pieper D H and Chavarría M 2019 Thermoplasmatales and sulfur-oxidizing bacteria dominate the microbial community at the surface water of a CO2-rich hydrothermal spring located in Tenorio Volcano National Park, Costa Rica; Extremophiles 23 177–187.

    Google Scholar 

  • Atkinson T, Cairns S, Cowan D A, Danson M J, Hough D W, Johnson D B, Norris P R, Raven N, Robinson C, Robson R and Sharp R J 2000 A microbiological survey of Montserrat Island hydrothermal biotopes; Extremophiles 4 305–313.

    Google Scholar 

  • Azeez K K A and Harinarayana T 2007 Magnetotelluric evidence of potential geothermal resource in Puga, Ladakh, NW Himalaya; Curr. Sci. 93 323–329.

    Google Scholar 

  • Baker G C, Gaffar S, Cowan D A and Suharto A R 2001 Bacterial community analysis of Indonesian hot springs; FEMS Microbiol. Lett. 200 103–109.

    Google Scholar 

  • Ball J W, Nordstrom D K, McCleskey R B, Schoonen M A and Xu Y 2001 Water-chemistry and on-site sulfur-speciation data for selected springs in Yellowstone National Park, Wyoming, 1996–1998; US Geological Survey, Open-File Report. 2001-49.

  • Baross J A 1998 Do the geological and geochemical records of the early earth support the prediction from global phylogenetic models of a thermophilic cenancestor; In: Thermophiles: The keys to Molecular Evolution and the Origin of Life (eds) Taylor and Francis, London, pp. 3–18.

  • Berelson W M, Corsetti F A, Pepe-Ranney C, Hammond D E, Beaumont W and Spear J R 2011 Hot spring siliceous stromatolites from Yellowstone National Park: Assessing growth rate and laminae formation; Geobiology 9 411–424.

    Google Scholar 

  • Blank C E, Cady S L and Pace N R 2002 Microbial composition of near-boiling silica-depositing thermal springs throughout Yellowstone National Park; Appl. Environ. Microbiol. 68 5123–5135.

    Google Scholar 

  • Brown A D 1990 Microbial water stress physiology; John Wiley, Chichester.

    Google Scholar 

  • Brown L D, Zhao W, Nelson K D, Hauck M, Alsdorf D, Ross A, Cogan M, Clark M, Liu X and Che J 1996 Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling; Science 274 1688–1690.

    Google Scholar 

  • Chan C S, Chan K G, Tay Y L, Chua Y H and Goh K M 2015 Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing; Front. Microbiol. 6 177.

    Google Scholar 

  • Chowdhury A N, Bose B B, Pal J C, Yudhisthir and Sengupta N R 1984 Studies of some minor and rare elements in hotspring deposit from Puga, Ladakh; Geol. Surv. India Spec. Publ. 12 585–591.

    Google Scholar 

  • Chowdhury A N, Handa B K and Das A K 1974 High lithium, rubidium and cesium contents of thermal spring water, spring sediments and borax deposits in Puga valley, Kashmir, India; Geochem. J. 8 61–65.

    Google Scholar 

  • Cline J D 1969 Spectrophotometric determination of hydrogen sulfide in natural water; Anal. Chem. 14 454–458.

    Google Scholar 

  • Cole J K, Peacock J P, Dodsworth J A, Williams A J, Thompson D B, Dong H, Wu G and Hedlund B P 2013 Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities; ISME J. 7 718–729.

  • Colman D R, Lindsay M R and Boyd E S 2019 Mixing of meteoric and geothermal fluids support hyperdiverse chemosynthetic hydrothermal communities; Nat. Commun. 10 681.

    Google Scholar 

  • Craig J, Absar A, Bhat G, Cadel G, Hafiz M, Hakhoo N, Kashkari R, Moore J, Ricchiuto T E, Thurow J and Thusu B 2013 Hot springs and the geothermal energy potential of Jammu Kashmir State, NW Himalaya, India. Earth-Sci. Rev. 126 156–177.

    Google Scholar 

  • Edgar R C 2013 UPARSE: Highly accurate OTU sequences from microbial amplicon reads; Nat. Methods 10 996–998.

    Google Scholar 

  • Everroad R C, Otaki H, Matsuura K and Haruta S 2012 Diversification of bacterial community composition along a temperature gradient at a thermal spring; Microbes Environ. 27 374–381.

  • Fernandes S, Mazumdar A, Bhattacharya S, Peketi A, Mapder T, Roy R, Carvalho M A, Roy C, Mahalakshmi P, Da Silva R, Rao P L S, Banik S K and Ghosh W 2018 Enhanced carbon-sulfur cycling in the sediments of Arabian Sea oxygen minimum zone center; Sci. Rep. 8 8665.

    Google Scholar 

  • Forterre P 2015 The universal tree of life: An update; Front. Microbiol. 6 717.

    Google Scholar 

  • Gansser A 1964 Geology of the Himalayas; London: Interscience Publishers.

  • Garrett D E 1998 Borates: Handbook of deposits, processing, properties, and use; Academic Press, London.

    Google Scholar 

  • Ghosh W and Dam B 2009 Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea; FEMS Microbiol. Rev. 33 999–1043.

    Google Scholar 

  • Ghosh W and Roy P 2006 Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant; Int. J. Syst. Evol. Microbiol. 56 91–97.

  • Ghosh W, Mallick S, Haldar P K, Pal B, Maikap S C and Gupta S K 2012 Molecular and cellular fossils of a Mat-like microbial community in geothermal boratic sinters; Geomicrobiol. J. 29 879–885.

    Google Scholar 

  • Ghosh W, Roy C, Roy R, Nilawe P, Mukherjee A, Haldar P K, Chauhan N K, Bhattacharya S, Agarwal A, George A, Pyne P, Mandal S, Rameez M J and Bala G 2015 Resilience and receptivity worked in tandem to sustain a geothermal mat community amidst erratic environmental conditions; Sci. Rep. 5 12179.

    Google Scholar 

  • Gokarn S G, Gupta G, Rao C K and Selvaraj C 2002 Electrical structure across the Indus Tsangpo and Shyok suture zones in NW Himalaya using magnetotelluric studies; Geophys. Res. Lett. 29 1–4.

    Google Scholar 

  • Grasshoff K, Kremling K and Ehrhardt M 1999 Methods of seawater analysis; Wiley-VCH, Weinheim.

    Google Scholar 

  • Gupta M L, Rao G V and Narain H 1974 Geothermal investigations in the Puga valley hot spring region, Ladakh, India; Geophys. Res. Bull. 12 119–136.

    Google Scholar 

  • Gupta M L, Sharma S R, Drolia R K and Sigh S B 1983 Subsurface thermal conditions of Puga valley hydrothermal field, Himalaya, India; J. Geophys. 54 51–59.

    Google Scholar 

  • Harinarayana T, Azeez K A, Murthy D N, Veeraswamy K, Rao S E, Manoj C and Naganjaneyulu K 2006 Exploration of geothermal structure in Puga geothermal field, Ladakh Himalayas, India by magnetotelluric studies; J. Appl. Geophys. 58 280–295.

    Google Scholar 

  • Hetzer A, Morgan H W, McDonald I R and Daughney C J 2007 Microbial life in Champagne Pool, a geothermal spring in Waiotapu, New Zealand; Extremophiles 11 605–614.

    Google Scholar 

  • Huang Q, Dong C Z, Dong R M, Jiang H, Wang S, Wang G, Fang B, Ding X, Niu L, Li X and Zhang C 2011 Archaeal and bacterial diversity in hot springs on the Tibetan Plateau, China; Extremophiles 15 549-563.

    Google Scholar 

  • Huang Q, Jiang H, Briggs B R, Wang S, Hou W, Li G, Wu G, Solis R, Arcilla C A, Abrajano T and Dong H 2013 Archaeal and bacterial diversity in acidic to circumneutral hot springs in the Philippines; FEMS Mcrobiol. Ecol. 85 452–464.

    Google Scholar 

  • Hug L A, Baker B J, Anantharaman K, Brown C T, Probst A J, Castelle C J, Butterfield C N, Hernsdorf A W, Amano Y, Ise K and Suzuki Y 2016 A new view of the tree of life; Nat. Microbiol. 1 16048.

    Google Scholar 

  • Jiménez D J, Andreote F D, Chaves D, Montaña J S, Osorio-Forero C, Junca H, Zambrano M M and Baena S 2012 Structural and functional insights from the metagenome of an acidic hot spring microbial planktonic community in the Colombian Andes; PloS One 7 e52069.

    Google Scholar 

  • Johnson D B, Body D A, Bridge T A M, Bruhn D F and Roberto F F 2001 Biodiversity of acidophilic moderate thermophiles isolated from two sites in Yellowstone National Park and their roles in the dissimilatory oxido-reduction of iron; In: Thermophiles Biodiversity, Ecology, and Evolution (eds) Reysenbach A L, Voytek M, Mancinelli R, Springer, Boston, pp. 23–39.

    Google Scholar 

  • Johnson D B, Okibe N and Roberto F F 2003 Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: Physiological and phylogenetic characteristics; Arch. Microbiol. 180 60–68.

    Google Scholar 

  • Jones B, Renaut R W and Rosen M R 2000 Stromatolites forming in acidic hot-spring waters, North Island, New Zealand; Palaios 15 450–475.

    Google Scholar 

  • Kelly D P and Wood A P 1994 Synthesis and determination of thiosulfate and polythionates; Methods Enzymol. 243 475–501.

  • Koynova R, Brankov J and Tenchov B 1997 Modulation of lipid phase behavior by kosmotropic and chaotropic solutes: Experiment and thermodynamic theory; Eur. Biophys. J. 25 261–274.

    Google Scholar 

  • Lacap D C, Barraquio W and Pointing S B 2007 Thermophilic microbial mats in a tropical geothermal location display pronounced seasonal changes but appear resilient to stochastic disturbance; Environ. Microbiol. 9 3065–3076.

    Google Scholar 

  • Li S, Unsworth M J, Booker J R, Wei W, Tan H and Jones A G 2003 Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data; Geophys. J. Int. 153 289–304.

    Google Scholar 

  • Mancinelli R, Botti A, Bruni F, Ricci M A and Soper A K 2007 Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker; J. Phys. Chem. B 111 13570–13577.

    Google Scholar 

  • Martin W, Baross J, Kelley D and Russell M J 2008 Hydrothermal vents and the origin of life; Nat. Rev. Microbiol. 6 805–814.

    Google Scholar 

  • Mathrani I M, Nielsen P, Sonne-Hansen J, Kristjansson J K and Ahring B K 1993 Influence of pH and temperature on enumeration of cellulose- and hemicellulose-degrading thermophilic anaerobes in neutral and alkaline Icelandic hot springs; Appl. Environ. Microbiol. 59 1963–1965.

    Google Scholar 

  • Mazumdar A, Dewangan P, Joäo H M, Peketi A, Khosla V R, Kocherla M, Badesab F K, Joshi R K, Ramamurty P B, Karisiddaiah S M, Patil D J, Dayal A M, Ramprasad T, Hawkesworth C J and Avanzinelli R 2009 Evidence of paleo-cold seep activity from the Bay of Bengal, offshore India; Geochem. Geophys. Geosys. 10 1–15.

    Google Scholar 

  • Menzel P, Gudbergsdóttir S R, Rike A G, Lin L, Zhang Q, Contursi P, Moracci M, Kristjansson J K, Bolduc B, Gavrilov S, Ravin N, Mardanov A, Bonch-Osmolovskaya E, Young M, Krogh A and Peng X 2015 Comparative metagenomics of eight geographically remote terrestrial hot springs; Microb. Ecol. 70 411–424.

    Google Scholar 

  • Meyer-Dombard D R, Swingley W, Raymond J, Havig J, Shock E L and Summons R E 2011 Hydrothermal ecotones and streamer biofilm communities in the Lower Geyser Basin, Yellowstone National Park; Environ. Microbiol. 13 2216–2231.

    Google Scholar 

  • Mishra H P, Ghatak T K, Rai R P and Mishra R K 1996 Geoelectrical studies for demarcating geothermal reservoir in Puga Valley, Ladakh District, Jammu and Kashmir; Geol. Surv. India Spec. Publ. 45 65–68.

    Google Scholar 

  • Navada S V and Rao S M 1991 Isotope studies of some geothermal waters in India; Isot. Environ. Healt. S. 27 153–163.

    Google Scholar 

  • Nordstrom D K, McCleskey R B and Ball J W 2009 Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters; Appl. Geochem. 24 191–207.

    Google Scholar 

  • Okur H I, Hladilkova J, Rembert K B, Cho Y, Heyda J, Dzubiella J, Cremer P S and Jungwirth P 2017 Beyond the Hofmeister series: Ion-specific effects on proteins and their biological functions; J. Phys. Chem. B 121 1997–2014.

    Google Scholar 

  • Owen R B, Renaut R W and Jones B 2008 Geothermal diatoms: A comparative study of floras in hot spring systems of Iceland, New Zealand, and Kenya; Hydrobiologia 610 175–192.

    Google Scholar 

  • Patel B H, Percivalle C, Ritson D J, Duffy C D and Sutherland J D 2015 Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism; Nat. Chem. 7 301–307.

    Google Scholar 

  • Payne D, Dunham E C, Mohr E, Miller I, Arnold A, Erickson R, Fones E M, Lindsay M R, Colman D R and Boyd E S 2019 Geologic legacy spanning >90 years explains unique Yellowstone hot spring geochemistry and biodiversity; Environ. Microbiol. 21 4180–4195.

    Google Scholar 

  • Power J F, Carere C R, Lee C K, Wakerley G L, Evans D W, Button M, White D, Climo M D, Hinze A M, Morgan X C, McDonald I R, Cary S C and Stott M B 2018 Microbial biogeography of 925 geothermal springs in New Zealand; Nat. Commun. 9 2876.

    Google Scholar 

  • R Core Team 2014 R: A Language and Environment for Statistical Computing (R Core Team, Vienna), http://www.R-project.org/.

  • Rai A P 2001 Compilation of data on chemical analysis of water and gas samples from north west Himalaya and adjoining areas; Bulletin Series-C No. 5, Geological Survey of India, Kolkata.

  • Ranjan S, Todd Z R, Sutherland J D and Sasselov D D 2018 Sulfidic anion concentrations on early earth for surficial origins-of-life chemistry; Astrobiology 18 1023–1040.

    Google Scholar 

  • Rantz S E 1982 Measurement of discharge by tracer dilution; In: Measurement and computation of streamflow: volume 1. Measurement of stage and discharge, Geological Survey and U.S. Government Printing Office, Washington DC, pp. 211–259.

  • Roark T C, Palacio L A, Gurnev P A, Ray B D and Petrache H I 2012 Interactions of lithium ions with lipid membranes; Biophys. J. 102 96.

    Google Scholar 

  • Roeselers G, Norris T B, Castenholz R W, Rysgaard S, Glud R N, Kuhl M and Muyzer G 2007 Diversity of phototrophic bacteria in microbial mats from Arctic hot springs (Greenland); Environ. Microbiol. 9 26–38.

    Google Scholar 

  • Roy C, Alam M, Mandal S, Haldar P K, Bhattacharya S, Mukherjee T, Roy R, Rameez M J, Misra A K, Chakraborty R, Nanda A K, Mukhopadhyay S K and Ghosh W 2016 Global association between thermophilicity and vancomycin susceptibility in Bacteria; Front. Microbiol. 7 412.

    Google Scholar 

  • Roy C, Bakshi U, Rameez M J, Mandal S, Haldar P K, Pyne P and Ghosh W 2019 Phylogenomics of an uncultivated, aerobic and thermophilic, photoheterotrophic member of Chlorobia sheds light into the evolution of the phylum Chlorobi; Comput. Biol. Chem. 80 206–216.

    Google Scholar 

  • Roy C, Rameez M J, Haldar P K, Peketi A, Mondal N, Bakshi U, Mapder T, Pyne P, Fernandes S, Bhattacharya S, Roy R, Mandal S, O’Neill W K, Mazumdar A, Mukhopadhyay S K, Mukherjee A, Chakraborty R, Hallsworth J E and Ghosh W 2020 Microbiome and ecology of a hot spring-microbialite system on the Trans-Himalayan Plateau; Sci. Rep. 10 5917.

    Google Scholar 

  • Saxena V K and D’Amore F 1984 Aquifer chemistry of the Puga and Chumathang high temperature geothermal systems in India; J. Volcanol. Geotherm. Res. 21 333–346.

    Google Scholar 

  • Shanker R 1988 Heat flow map of India and its geological and economic significance; Indian Minerals 42 89–110.

    Google Scholar 

  • Shanker R 1991 Geothermal atlas of India; Geol. Surv. India Spec. Publ. 19 14–17.

    Google Scholar 

  • Shanker R, Absar A, Srivastava G C and Pandey S N 1999 Source and significance of anomalously high cesium in geothermal fluid at Puga, Ladakh, India; In: Proceedings of the 21st New Zealand Geothermal Workshop 21 79–82.

  • Shanker R, Padhi R N, Arora C L, Prakash G, Thussu J L and Dua K J S 1976 Geothermal exploration of the Puga and Chumathang geothermal fields, Ladakh, India; In: Proceedings of the 2nd United Nations Symposium on the Development and Use of Geothermal Resources, San Francisco, USA 1 245–258.

  • Singh D D 1991 Anelasticity of the crust and mantle beneath north and central India from inversion of the Love and Rayleigh wave attenuation data; Pure Appl. Geophys. 135 545–558.

    Google Scholar 

  • Singh S B, Drolia R K, Sharma S R and Gupta M L 1983 Application of resistivity surveying to geothermal exploration in the Puga Valley, India; Geoexploration 21 1–11.

    Google Scholar 

  • Skirnisdottir S, Hreggvidsson G O, Hjorleifsdottir S, Marteinsson V T, Petursdottir S K, Holst O and Kristjansson J K 2000 Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats; Appl. Environ. Microbiol. 66 2835–2841.

    Google Scholar 

  • Steller L H, Nakamura E, Ota T, Sakaguchi C, Sharma M and Van Kranendonk M J 2019 Boron isotopes in the Puga geothermal system, India, and their implications for the habitat of early life; Astrobiology 19 1459–1473.

    Google Scholar 

  • Tiwari S K, Rai S K, Bartarya S K, Gupta A K and Negi M 2016 Stable isotopes (δ13CDIC, δD, δ18O) and geochemical characteristics of geothermal springs of Ladakh and Himachal (India): Evidence for CO2 discharge in northwest Himalaya; Geothermics 64 314–330.

    Google Scholar 

  • Virdi N S, Thakur V C and Kumar S 1977 Blueschist facies metamorphism from the Indus suture zone of Ladakh and its significance; Him. Geol. 7 479–482.

    Google Scholar 

  • Wachtershauser G 2006 From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya; Phil. Trans. Roy. Soc. B 361 1787–1806.

    Google Scholar 

  • Walter M R, Bauld J and Brock T D 1972 Siliceous algal and bacterial stromatolites in hot spring and geyser effluents of Yellowstone National park; Science 178 402–405.

    Google Scholar 

  • Wang S, Hou W, Dong H, Jiang H, Huang L, Wu G, Zhang C, Song Z, Zhang Y, Ren H and Zhang J 2013 Control of temperature on microbial community structure in hot springs of the Tibetan Plateau; PLoS One 8 e62901.

    Google Scholar 

  • Wang Y, Li P, Guo Q, Jiang Z and Liu M 2018 Environmental biogeochemistry of high arsenic geothermal fluids; Appl. Geochem. 97 81–92.

    Google Scholar 

  • Wemheuer B, Taube R, Akyol P, Wemheuer F and Daniel R 2013 Microbial diversity and biochemical potential encoded by thermal spring metagenomes derived from the Kamchatka Peninsula; Archaea 2013 136714.

    Google Scholar 

  • West P W and Gaeke G C 1956 Fixation of sulfur dioxide as disulfitomercurate (II) and subsequent colorimetric estimation; Anal. Chem. 28 1816–1819.

    Google Scholar 

  • Xu Y, Schoonen M A A, Nordstrom D K, Cunningham K M and Ball J W 1998 Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: I. The origin of thiosulfate in hot spring waters; Geochim. Cosmochim. Acta 62 3729–3743.

    Google Scholar 

Download references

Acknowledgements

This research was financed by Bose Institute as well as Science and Engineering Research Board (SERB), Government of India (GoI) (SERB grant numbers SR/FT/LS-204/2009 and EMR/2016/002703). Sri Pankaj Kumar Ghosh (Chinsurah, West Bengal, India) provided additional travel grants for field expeditions. CR and NM received fellowships from University Grants Commission, GoI and SERB, GoI, respectively. On-field assistance provided by Baishali Ghosh, Asgar Ali, Rimjhim Bhattacherjee, Srabana Bhattacherjee, Bikash Jana, Lotus Sonam and Amrit Pal Singh, over the decade-long exploration of the Puga geothermal area, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wriddhiman Ghosh.

Additional information

Communicated by N V Chalapathi Rao

Supplementary materials pertaining to this article are available on the Journal of Earth Science Website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 14 kb)

Supplementary material 2 (DOCX 573 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, C., Mondal, N., Peketi, A. et al. Geomicrobial dynamics of Trans-Himalayan sulfur–borax spring system reveals mesophilic bacteria’s resilience to high heat. J Earth Syst Sci 129, 157 (2020). https://doi.org/10.1007/s12040-020-01423-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-020-01423-y

Keywords

Navigation