Skip to main content
Log in

Bacteria from Poorly Studied Phyla as a Potential Source of New Enzymes: β-Galactosidases from Planctomycetes and Verrucomicrobia

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Here, we present a phylogenetic analysis of a large group of the nearest homologues of a β-galactosidase, recently cloned from a soil metagenome and representing a new family of glycoside hydrolases. These proteins form an independent subfamily of hypothetical β-galactosidases and are almost exclusively represented in bacteria of the poorly studied phyla Planctomycetes and Verrucomicrobia, as well as Bacteroidetes. The phylogenetic tree of this subfamily consists of eleven highly stable clusters of branches, probably resulting from a series of gene duplications. An analysis of the tree topology suggested that the corresponding genes first evolved in Planctomycetes and most gene duplications occurred within this phylum. Later, these genes spread to several other bacterial phyla through horizontal transfers, the most numerous being transfers to Verrucomicrobia. The genomes of most Planctomycetes contain multiple paralogues of these genes of a different origin: in some cases, the horizontal transfers played a key role, while in other cases gene duplications played a key role. The importance of poorly studied groups of prokaryotes as a source of novel glycoside hydrolases is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Boedeker, C., Schüler, M., Reintjes, G., Jeske, O., van Teeseling, M.C.F., Jogler, M., Rast, P., Borchert, D., Devos, D.P., Kucklick, M., Schaffer, M., Kolter, R., van Niftrik, L., Engelmann, S., Amann, R., et al., Determining the bacterial cell biology of Planctomycetes, Nat. Commun., 2017, vol. 8, art. 14853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cabello-Yeves, P.J., Ghai, R., Mehshad, M., Picazo, A., Camacho, A., and Rodriguez-Valera, F., Reconstruction of diverse verrucomicrobial genomes from metagenome datasets of freshwater reservoirs, Front. Microbiol., 2017, vol. 8, art. 2131.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chandrasekar, B. and van der Hoorn, R.A., Beta-galactosidases in Arabidopsis and tomato–a mini review, Biochem. Soc. Trans., 2016, vol. 44, pp. 150–158.

    Article  CAS  PubMed  Google Scholar 

  4. Cheng, J., Romantsov, T., Engel, K., Doxey, A.C., Rose, D.R., Neufeld, J.D., and Charles, T.C., Functional metagenomics reveals novel β-galactosidases not predictable from gene sequences, PLoS One, 2017, vol. 12, art. e0172545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Devos, D.P., PVC bacteria: variation of, but not exception to, the Gram-negative cell plan, Trends Microbiol., 2014, vol. 22, pp. 14–20.

    Article  CAS  PubMed  Google Scholar 

  6. Fuerst, J.A., The PVC superphylum: exceptions to the bacterial definition?, Antonie van Leeuwenhoek, 2013, vol. 104, pp. 451–466.

    Article  CAS  PubMed  Google Scholar 

  7. Glöckner, F.O., Kube, M., Bauer, M., Teeling, H., Lombardot, T., Ludwig, W., Gade, D., Beck, A., Borzym, K., Rabus, R., Schlesner, H., Amann, R., and Reinhardt, R., Complete genome sequence of the marine planctomycete Pirellula sp. strain 1, Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, pp. 8298–8303.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Haft, D.H., Selengut, J.D., Richter, R.A., Harkins, D., Basu, M.K., and Beck, E., TIGRFAMs and genome properties in 2013, Nucleic Acids Res., 2013, vol. 41 (Database issue), pp. D387–D395.

    Article  CAS  PubMed  Google Scholar 

  9. Hahnke, R.L., Meier-Kolthoff, J.P., García-López, M., Mukherjee, S., Huntemann, M., Ivanova, N.N., Woyke, T., Kyrpides, N.C., Klenk, H.P., and Göker, M., Genome-based taxonomic classification of Bacteroidetes, Front. Microbiol., 2016, vol. 7, art. 2003.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Husain, Q., Beta-galactosidases and their potential applications: a review, Crit. Rev. Biotechnol., 2010, pp. 30, pp. 41–62.

  11. Ivanova, A.A., Naumoff, D.G., Miroshnikov, K.K., Liesack, W., and Dedysh, S.N., Comparative genomics of four Isosphaeraceae Planctomycetes: a common pool of plasmids and glycoside hydrolase genes shared by Paludisphaera borealis PX4T, Isosphaera pallida IS1BT, Singulisphaera acidiphila DSM 18658T, and strain SH-PL62, Front. Microbiol., 2017, vol. 8, art. 412.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P.M., and Henrissat, B., The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res., 2014, vol. 42 (Database issue), pp. D490–D495.

    Article  CAS  PubMed  Google Scholar 

  13. Luis, A.S., Briggs, J., Zhang, X., Farnell, B., Ndeh, D., Labourel, A., Baslé, A., Cartmell, A., Terrapon, N., Stott, K., Lowe, E.C., McLean, R., Shearer, K., Schückel, J., Venditto, I., et al., Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides, Nat. Microbiol., 2018, vol. 3, pp. 210–219.

    Article  CAS  PubMed  Google Scholar 

  14. Naumoff, D.G., β-Fructosidase superfamily: homology with some α-L-arabinases and β-D-xylosidases, Prot. Struct. Funct. Genet., 2001, vol. 42, pp. 66–76.

    Article  CAS  Google Scholar 

  15. Naumoff, D.G., Development of a hierarchical classification of the TIM-barrel type glycoside hydrolases, Proc. 5th Int. Conf. Bioinformat. Genome Regul. Structure, July 16–22, 2006, Novosibirsk, Russia, 2006, vol. 1, pp. 294–298. (http://www.bionet.nsc.ru/meeting/bgrs_proceedings/papers/2006/ BGRS_2006_V1_067.pdf).

  16. Naumoff, D.G., Furanosidase superfamily: search of homologues, Mol. Biol. (Moscow), 2012, vol. 46, pp. 322–327.

    Article  CAS  Google Scholar 

  17. Naumoff, D.G., GH101 family of glycoside hydrolases: subfamily structure and evolutionary connections with other families, J. Bioinform. Comput. Biol., 2010, vol. 8, pp. 437–451.

    Article  CAS  PubMed  Google Scholar 

  18. Naumoff, D.G., Hierarchical classification of glycoside hydrolases, Biochemistry (Moscow), 2011, vol. 76, pp. 622–635.

    CAS  PubMed  Google Scholar 

  19. Naumoff, D.G., Hierarchical classification of glycoside hydrolases, FEBS J., 2014, vol. 281, no. S1, p. 569.

    Google Scholar 

  20. Naumoff, D.G., Multiple lateral transfers and duplications of genes as sources of diversity of α-L-rhamnosidases in Clostridium methylpentosum DSM5476, Microbiology (Moscow), 2013, vol. 82, pp. 415–422.

    Article  CAS  Google Scholar 

  21. Naumoff, D.G. and Dedysh, S.N., Lateral gene transfer between the Bacteroidetes and Acidobacteria: the case of α‑L-rhamnosidases, FEBS Lett., 2012, vol. 586, pp. 3843–3851.

    Article  CAS  PubMed  Google Scholar 

  22. Naumoff, D.G., Ivanova, A.A., and Dedysh, S.N., Phylogeny of β-xylanases from Planctomycetes, Mol. Biol. (Moscow), 2014, vol. 48, pp. 439–447.

    Article  CAS  Google Scholar 

  23. Rivas-Marin, E. and Devos, D.P. The paradigms they are a‑Changin’: past, present and future of PVC bacteria research, Antonie van Leeuwenhoek, 2018, vol. 111, pp. 785–799.

    Article  PubMed  Google Scholar 

  24. Saqib, S., Akram, A., Halim, S.A., and Tassaduq, R., Sources of β-galactosidase and its applications in food industry, 3 Biotech., 2017, vol. 7, no. 1, art. 79.

  25. Terrapon, N., Lombard, V., Drula, E., Coutinho, P.M., and Henrissat, B., Chapter 6. The CAZy database/the Carbohydrate-Active Enzyme (CAZy) database: principles and usage guidelines, in A Practical Guide to Using Glycomics Databases, Aoki-Kinoshita, K.F., Ed., Tokyo: Springer, 2017, pp. 117–131.

  26. Wagner, M. and Horn, M., The Planctomycetes, Verrucomicrobia, Chlamydia and sister phyla comprise a superphylum with biotechnological and medical relevance, Curr. Opin. Biotechnol., 2006, vol. 17, pp. 241–249.

    Article  CAS  PubMed  Google Scholar 

  27. Ward, N. L., Challacombe, J.F., Janssen, P.H., Henrissat, B., Coutinho, P.M., Wu, M., Xie, G., Haft, D. H., Sait, M., Badger, J., Barabote, R.D., Bradley, B., Brettin, T.S., Brinkac, L.M., Bruce, D., et al., Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils, Appl. Environ. Microbiol., 2009, vol. 75, pp. 2046–2056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed as a part of budget-supported project no. 0104-2018-0034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Naumoff.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumoff, D.G., Dedysh, S.N. Bacteria from Poorly Studied Phyla as a Potential Source of New Enzymes: β-Galactosidases from Planctomycetes and Verrucomicrobia. Microbiology 87, 796–805 (2018). https://doi.org/10.1134/S0026261718060127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261718060127

Keywords:

Navigation