Skip to main content
Log in

Myrothecium verrucaria F-3851, a producer of laccases transforming phenolic compounds at neutral and alkaline conditions

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The conditions of submerged cultivation of the ascomycete Myrothecium verrucaria strain F-3851 were optimized in order to increase the yield of laccase in the culture liquid using the natural sources of carbon and energy (fresh rubbed potato tuber or floured grains of buckwheat, barley, oat, wheat, rye, rice, pea, or haricot). The pH-optima of oxidation of a number of laccase substrates (ABTS, 2,6-dimethoxyphenol, syringaldazine, ferulic acid, p-coumaryl alcohol, and coniferyl alcohol) by laccases of the culture liquid as well as substrate selectivity of laccases were investigated. The intermediates of transformation of phenylpropanoids (ferulic acid, p-coumaryl alcohol and coniferyl alcohol) by laccases of the culture liquid at neutral conditions were purified and identified. The ability of laccases of the culture liquid of M. verrucaria strain F-3851 to catalyze polymer compound formation during phenylpropanoid transformation was shown that offers the prospects of application of the laccases of M. verrucaria strain F-3851 for production of pharmacologically valuable polymers in a number of cellular biotechnologies carried out in neutral or alkaline environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldrian, P, Fungal laccases—occurrence and properties, FEMS Microbiol. Rev., 2006, vol. 30, pp. 215–242.

    Article  CAS  PubMed  Google Scholar 

  • Berka, R.M., Schneider, P., Golightly, E.J., Brown, S.H., Madden, M., Brown, K.M., Halkier, T., Mondorf, K., and Xu, F, Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme expressed in Aspergillus oryzae, Appl. Environ. Microbiol., 1997, vol. 63, pp. 3151–3157.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Branchi, B., Galli, C., and Gentili, P, Kinetics of oxidation of benzyl alcohols by the dication and radical cation of ABTS. Comparison with laccase–ABTS oxidations: an apparent paradox, Org. Biomol. Chem., 2005, vol. 3, pp. 2604–2614.

    Article  CAS  PubMed  Google Scholar 

  • Chefetz, B., Chen, Y., and Hadar, Y, Purification and characterization of laccase from Chaetomium thermophilium and its role in humification, Appl. Environ. Microbiol., 1998, vol. 64, pp. 3175–3179.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cunha, W.R., Andrade e Silva, M.L., Sola Veneziani, R.C., Ambrósio, S.R., and Bastos, J.K., Lignans: chemical and biological properties, in Phytochemicals—A Global Perspective of Their Role in Nutrition and Health, Rao, V., Ed.,2012. ISBN: 978-953-51-0296-0.

    Google Scholar 

  • Eggert, C., Temp, U., and Eriksson, K.E, The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase, Appl. Environ. Microbiol., 1996, vol. 62, pp. 1151–1158.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elshafei, A.M., Hassan, M.M., Haroun, B.M., Elsayed, M.A., and Othman, A.M, Optimization of laccase production from Penicillium martensii NRC 345, Advans. Life Sci., 2012, vol. 2, pp. 31–37.

    Article  Google Scholar 

  • Gouka, R.J., van der Heiden, M., Swarthoff, T., and Verrips, C.T, Cloning of a phenol oxidase gene from Acremonium murorum and its expression in Aspergillus awamori, Appl. Environ. Microbiol., 2001, vol. 67, pp. 2610–2616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junghanns, C., Parra, R., Keshavarz, T., and Schlosser, D, Towards higher laccase activities produced by aquatic ascomycetous fungi through combination of elicitors and an alternative substrate, Eng. Life Sci., 2008, vol. 8, pp. 277–285.

    Article  CAS  Google Scholar 

  • Kiiskinen, L.-L., Viikari, L., and Kruus, K, Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces, Appl. Microbiol. Biotechnol., 2002, vol. 59, pp. 198–204.

    Article  CAS  PubMed  Google Scholar 

  • Kudanga, T.G., Nyanhongo, S., Guebitz, G.M., and Burton, S, Potential applications of laccase-mediated coupling and grafting reactions: a review, Enz. Microbiol. Technol., 2011, vol. 48, pp. 195–208.

    Article  CAS  Google Scholar 

  • Kunamneni, A., Plou, F.J., Ballesteros, A., and Alcalde, M, Laccases and their applications: a patent review, Rec. Pat. Biotech., 2008, vol. 2, pp. 10–24.

    Article  CAS  Google Scholar 

  • Leneva, N.A., Kolomytseva, M.P., Baksunov, B.P., and Golovleva, L.A, Phenanthrene and anthracene degradation by microorganisms of the genus Rhodococcus, Appl. Biochem. Microbiol., 2009, vol. 45, pp. 169–175.

    Article  CAS  Google Scholar 

  • Leonowicz, A. and Grzywnowicz, K, Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate, Enz. Microb. Technol., 1981, vol. 3, pp. 55–58.

    Article  CAS  Google Scholar 

  • Margot, J., Bennati-Granier, C., Maillard, J., Blánquez, P., Barry, D.A., and Holliger, C, Bacterial versus fungal laccase: potential for micropollutant degradation, AMB Express, 2013, vol. 3, pp. 63–77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marienhagen, J. and Bott, M, Metabolic engineering of microorganisms for the synthesis of plant natural products, J. Biotechnol., 2013, vol. 163, pp. 166–178.

    Article  CAS  PubMed  Google Scholar 

  • Mikolasch, A. and Schauer, F, Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials, Appl. Microbiol. Biotechnol., 2009, vol. 82, pp. 605–624.

    Article  CAS  PubMed  Google Scholar 

  • Paszczynski, A., Huynh, V.-B., and Crawford, R, Comparison of ligninase-I and peroxidase-M2 from the whiterot fungus Phanerochaete chrysosporium, Arch. Biochem. Biophys., 1986, vol. 244, pp. 750–765.

    Article  CAS  PubMed  Google Scholar 

  • Perez, J. and Jeffries, T.W. Mineralization of C-ringlabeled synthetic lignin correlates with the production of lignin peroxidase, not of manganese peroxidase or laccase, Appl. Environ. Microbiol., 1990, vol. 56, pp. 1806–1812.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polak, J. and Jarosz-Wilkolazka, A, Fungal laccases as green catalysts for dye synthesis, Process Biochem., 2012, vol. 47, pp. 1295–1307.

    Article  CAS  Google Scholar 

  • Quaratino, D., Federici, F., Petruccioli, M., Fenice, M., and D’Annibale, A, Production, purification and partial characterisation of a novel laccase from the white-rot fungus Panus tigrinus CBS 577.79, Antonie van Leeuwenhoek, 2007, vol. 91, pp. 57–69.

    Article  CAS  PubMed  Google Scholar 

  • Riva, S, Laccases: blue enzymes for green chemistry, Trends Biotechnol., 2006, vol. 24, pp. 219–226.

    Article  CAS  PubMed  Google Scholar 

  • Scott, S.L., Chen, W.J., Bakac, A., and Espenson, J.H, Spectroscopic parameters, electrode potentials, acid ionization constants, and electron exchange rates of the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) radicals and ions, J. Phys. Chem., 1993, vol. 97, pp. 6710–6714.

    CAS  Google Scholar 

  • Sterjiades, R., Dean, J.F.D., and Eriksson, K.-E.L., Laccase from Sycamore maple (Acer pseudoplatanus) polymerizes monolignols, Plant Physiol., 1992, vol. 99, pp. 1162–1168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulistyaningdyah, W.T., Ogawa, J., Tanaka, H., Maeda, C., and Shimizu, S, Characterization of alkaliphilic laccase activity in the culture supernatant of Myrothecium verrucaria 24G-4 in comparison with bilirubin oxidase, FEMS Microbiol. Lett., 2004, vol. 230, pp. 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Witayakran S., Ragauskas A.J, Synthetic applications of laccase in green chemistry, Adv. Synth. Catal., 2009, vol. 351, pp. 1187–1209.

    Article  CAS  Google Scholar 

  • Xu, F, Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition, Biochemistry, 1996, vol. 35, pp. 7608–7614.

    CAS  PubMed  Google Scholar 

  • Zhao, D., Cui, D.Z., Mu, J.S., Zhang, X., Wang, Y., and Zhao M, Induction of a white laccase from the deuteromycete Myrothecium verrucaria NF-05 and its potential in decolorization of dyes, Biocatal. Biotransform., 2014, vol. 32, pp. 214–221.

    Article  CAS  Google Scholar 

  • Zhao, D., Zhang, X., Cui, D., and Zhao, M, Characterization of a novel white laccase from the deuteromycete fungus Myrothecium verrucaria NF-05 and its decolorization of dyes, PLoS One, 2012, vol. 7. e38817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Kolomytseva.

Additional information

Original Russian Text © E.V. Podieiablonskaia, M.P. Kolomytseva, N.M. Myasoedova, B.P. Baskunov, A.M. Chernykh, T. Classen, J. Pietruszka, L.A. Golovleva, 2017, published in Mikrobiologiya, 2017, Vol. 86, No. 3, pp. 344–351.

The authors contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podieiablonskaia, E.V., Kolomytseva, M.P., Myasoedova, N.M. et al. Myrothecium verrucaria F-3851, a producer of laccases transforming phenolic compounds at neutral and alkaline conditions. Microbiology 86, 370–376 (2017). https://doi.org/10.1134/S0026261717030146

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261717030146

Keywords

Navigation