Skip to main content
Log in

Relations between bacterioplankton, heterotrophic nanoflagellates, and virioplankton in the littoral zone of a large plain reservoir: Impact of bird colonies

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Interactions of the main components of microbial planktonic food web (bacteria, heterotrophic nanoflagellates, and viruses) were studied in a protected overgrown littoral zone of the Rybinsk Reservoir (Upper Volga). The effect of colonial bird settlements (the Laridae family) on these processes was determined. The following systems exhibited significant negative correlations: “heterotrophic nanoflagellates–large rod-shaped bacteria” (“predator–prey”), “viruses-bacteriophages–bacterial products” (“parasite–host”) and “heterotrophic nanoflagellates–viruses-bacteriophages”. Relations between biotic factors controlling bacterial development were more pronounced outside the zone affected by colonial bird settlements. Near the bird colony the role of viruses in mortality of planktonic bacteria increased. Reproduction of bacterial cells accelerated in response to the increase in feeding activity of heterotrophic nanoflagellates. Virusesbacteriophages and heterotrophic nanoflagellates probably eliminate different targets until medium-sized cells become predominant in the bacterial community. Then heterotrophic nanoflagellates consume bacterial cells infected with viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, A., Larsson, U., and Hagström, A., Size-selective grazing by a microflagellate on pelagic bacteria, Mar. Ecol. Prog. Ser., 1986, vol. 33, pp. 51–57.

    Article  Google Scholar 

  • Auguet, J.C., Montanié, H., Hartmann, H.J., Lebaron, P., Casamayor, E.O., Catala, P., and Delmas, D., Potential effect of freshwater virus on the structure and activity of bacterial communities in the Marennes-Oleron bay (France), Microb. Ecol., 2009, vol. 57, pp. 295–306.

    Article  CAS  PubMed  Google Scholar 

  • Berdjeb, L., Pollet, T., Domaizon, I., and Jacquet S., Effect of grazers and viruses on bacterial community structure and production in two contrasting trophic lakes, BMC Microbiol., 2011, vol. 11, pp. 88–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bettarel, Y., Sime-Ngando, T., Bouvy, M., Arfi, R., and Amblard, C., Low consumption of virus-sized particles by heterotrophyc nanoflagellates in two lakes of the French Massif Central, Aquat. Microb. Ecol., 2005, vol. 39, pp. 205–209.

    Article  Google Scholar 

  • Caron, D.A., Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy and comparison with other procedures, Appl. Environ. Microbiol., 1983, vol. 46, pp. 491–498.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colombet, J. and Sime-Ngando, T., Seasonal depthrelated gradients in virioplankton: lytic activity and comparison with protistan grazing potential in lake Pavin (France), Microb. Ecol., 2012, vol. 64, pp. 67–78.

    Article  PubMed  Google Scholar 

  • del Giorgio, P.A., Gasol, J.M., Vaque, D., Mura, P., Agusti, S., and Duarte, C.M., Bacterioplankton community structure: protists control net production and the proportion of active bacteria in a coastal marine community, Limnol. Oceanogr., 1996, vol. 41, no. 6, pp. 1169–1179.

    Article  Google Scholar 

  • Fischer, U.R. and Velimirov, B., High control of bacteria production by viruses in a eutrophic oxbow lake, Aquat. Microb. Ecol., 2002, vol. 27, vol. 1, pp. 1–12.

    Article  Google Scholar 

  • Fukuda, M., Matsuyama, J., Katano, T., Nakano, S., and Dazzo, F., Assessing primary and bacterial production rates in biofilms on pebbles in Ishite Stream, Japan, Microb. Ecol., 2006, vol. 52, pp. 1–9.

    Article  PubMed  Google Scholar 

  • Gonzalez, J.M. and Suttle, C.A., Grazing by marine nanoflagellates on viruses and viral-sized particles ingestion and digestion, Mar. Ecol. Prog. Ser., 1993, vol. 94, pp. 1–10.

    Article  Google Scholar 

  • Jacquet, S., Domaizon, I., Personnic, S., and Sime-Ngando, T. Do small grazers influence virus-induced mortality of bacteria in Lake Bourget (France)?, Fund. Appl. Limnol. Arch. Hydrobiol., 2007, vol. 170, pp. 125–132.

    Article  Google Scholar 

  • Jurgens, K., Predation on bacteria and bacterial resistance mechanisms: comparative aspects among different predator groups in aquatic systems, Microbiology Monographs, Berlin: Springer-Verlag, 2007, vol. 4, pp. 57–92.

    Article  Google Scholar 

  • Kopylov, A.I. and Kosolapov, D.B., Bakterioplankton vodokhranilishch Verkhnei i Srednei Volgi (Bacterioplankton of the Upper and Mid-Volga Reservoirs), Moscow, 2008.

    Google Scholar 

  • Kopylov, A.I., Kosolapov, D.B., and Zabotkina, E.A., Viruses in the plankton of the Rybinsk Reservoir, Microbiology (Moscow), 2007, vol. 76, no. 6, pp. 782–790.

    Article  CAS  Google Scholar 

  • Martiny, J.B., Riemann, L., Marston, M.F., and Middelboe, M., Antagonistic coevolution of 433 marine planktonic viruses and their hosts, Ann. Rev. Mar. Sci., 2014, vol. 6, pp. 393–414.

    Article  PubMed  Google Scholar 

  • Miki, T. and Jacquet, S., Complex interactions in the microbial world: underexplored key links between viruses, bacteria and protozoan grazers in aquatic environments, Aquat. Microb. Ecol., 2008, vol. 51, pp. 195–208.

    Article  Google Scholar 

  • Newell, S.Y. and Christian, R.R., Frequency of dividing cells as an estimator of bacterial productivity, Appl. Environ. Microbiol., 1981, vol. 42, pp. 23–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noble, R.T. and Fuhrman, J.A., Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria, Aquat. Microb. Ecol., 1998, vol. 14, pp. 113–118.

    Article  Google Scholar 

  • Norland, S., The relationships between biomass and volume of bacteria, in Handbook of Methods in Aquatic Microbial Ecology, Kemp, P., Sherr, B., Sherr, E., and Cole, J., Eds., Boca Raton: Lewis, 1993, pp. 303–308.

    Google Scholar 

  • Porter, K.G. and Feig, Y.S., The use of DAPI for identifying and counting of aquatic microflora, Limnol. Oceanogr., 1980, vol. 25, pp. 943–948.

    Article  Google Scholar 

  • Riemann, B. and Søndergaard, M., Measurements of diel rates of bacterial secondary production in aquatic environments, Appl. Environ. Microbiol., 1984, vol. 47, pp. 632–638.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rohwer, F. and Thurber, R.V., Viruses manipulate the marine environment, Nature, 2009, vol. 459, no. 7244, pp. 207–212.

    Article  CAS  PubMed  Google Scholar 

  • Romanenko, V.I., Mikrobiologicheskie protsessy produktsii i destruktsii organicheskogo veshchestva vo vnutrennikh vodoemakh (Microbiological Processes of Production and Destruction of Organic Matter in Internal Water Bodies), Leningrad: Nauka, 1985.

    Google Scholar 

  • Rumyantseva, E.V., Kosolapov, D.B., Kosolapova, N.G., and Kulakov, D.V., Dynamics of planktic microorganisms and viruses in the littoral zone of the Rybinsk reservoir: influence of water-bird colonies, Inland Water Biol., 2013, vol. 6, no. 4, pp. 276–284.

    Article  Google Scholar 

  • Rumyantseva, E.V., Kosolapov, D.B., Kosolapova, N.G., and Levanova, Y.V., Bacterioplankton in the area of gull colonies (Laridae) in the Rybinsk Reservoir, Inland Water Biol., 2015, vol. 8, no. 2, pp. 136–146.

    Article  Google Scholar 

  • Rumyantseva, E.V., Sakharova, E.G., Kosolapov, D.B., Kosolapova, N.G., Meteleva, N.Yu., and Korneva, L.G., Bacterio-and phytoplankton of protected littoral of a hightrophicity plain Reservoir: effect of colonial birds, Voda: Khim. Ekol., 2014, no. 1 (66), pp. 64–70.

    Google Scholar 

  • Tanaka, T., Fujita, N., and Taniguchi, A., Predator-prey eddy in heterotrophic nanoflagellate-bacteria relationships in a coastal marine environment: a new scheme for predator-prey associations, Aquat. Microb. Ecol., 1997, vol. 13, pp. 249–256.

    Article  Google Scholar 

  • Thingstad, T.F., Element of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic system, Limnol. Oceanogr., 2000, vol. 45, pp. 1320–1328.

    Article  Google Scholar 

  • Torreton, J.-E. and Dufour, E., Bacterioplankton production determined by DNA synthesis, protein synthesis, and frequency of dividing cells in Tuamotu Atoll lagoons and surrounding ocean, Microb. Ecol., 1996, vol. 32, pp. 185–202.

    Article  CAS  Google Scholar 

  • Tuomi, P., Bacterial carbon production in the northern Baltic: a comparison of thymidine incorporation and FDC based methods, Mar. Ecol. Prog. Ser., 1997, vol. 153, pp. 59–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Rumyantseva.

Additional information

Original Russian Text © E.V. Rumyantseva, N.G. Kosolapova, D.B. Kosolapov, 2016, published in Mikrobiologiya, 2016, Vol. 85, No. 5, pp. 588–597.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumyantseva, E.V., Kosolapova, N.G. & Kosolapov, D.B. Relations between bacterioplankton, heterotrophic nanoflagellates, and virioplankton in the littoral zone of a large plain reservoir: Impact of bird colonies. Microbiology 85, 620–628 (2016). https://doi.org/10.1134/S0026261716050143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261716050143

Keywords

Navigation