Skip to main content
Log in

Distribution and Relationship between Heterotrophic Organisms and Viruses on the East Siberian Sea Shelf

  • MARINE BIOLOGY
  • Published:
Oceanology Aims and scope

Abstract

The distribution of heterotrophic bacteria, viruses, and heterotrophic nanoflagellates was studied in the shelf waters of the East Siberian Sea along the meridional transect from the Kolyma River delta in September. The production of heterotrophic bacteria and their mortality as a result of protozoan grazing and lysis of viruses were also determined. The patterns of the spatial distribution of microorganisms and viruses varied: the number of bacterioplankton decreased with increasing distance from the Kolyma delta, while, on the contrary, its size and biomass increased to the shelf areas with negative water temperatures. The highest abundance and biomass of virioplankton were recorded at the extreme southern and northern stations of the transect and the abundance and biomass of heterotrophic nanoflagellates increased from the south to the north. The studied shelf waters were characterized by a high concentration of fine-textured detrital particles, and, as a consequence, a relatively large number of viruses attached to detritus. The mortality of heterotrophic bacterioplankton accounted for most of its daily production. Protozoan grazing was the main cause of bacterial mortality that significantly exceeded their mortality due to viral lysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. M. Bezzubova, A. M. Seliverstova, I. A. Zamyatin, and N. D. Romanova, “Heterotrophic bacterioplankton of the Laptev and East Siberian sea shelf affected by freshwater inflow areas,” Oceanology (Engl. Transl.) 60, 62–73 (2020). https://doi.org/10.1134/S0001437020010026

  2. T. A. Belevich, L. V. Il’yash, A. L. Chul’tsova, and M. V. Flint, “The spatial distribution of plankton picocyanobacteria on the shelf of the Kara, Laptev, and East Siberian seas,” Moscow Univ. Biol. Sci. Bull. 74, 194–199 (2019).

    Article  Google Scholar 

  3. M. P. Venger, A. I. Kopylov, E. A. Zabotkina, and P. R. Makarevich, “The influence of viruses on bacterioplankton of the offshore and coastal parts of the Barents Sea,” Russ. J. Mar. Biol. 42, 26–35 (2016).

    Article  Google Scholar 

  4. A. B. Demidov and V. I. Gagarin, “Primary production and associated environmental conditions in the East Siberian Sea in autumn,” Dokl. Earth Sci. 487, 1006–1011 (2019). https://doi.org/10.1134/S1028334X19080257

    Article  Google Scholar 

  5. A. V. Drits, A. F. Pasternak, M. D. Kravchishina, et al., “The role of plankton in the vertical flux in the East Siberian Sea shelf,” Oceanology (Engl. Transl.) 59, 669–677 (2019). https://doi.org/10.1134/S0001437019050059

  6. I. O. Dumanskaya, Glacial Conditions of the Seas of Asian Part of Russia (Sotsin, Moscow, 2017) [in Russian].

    Google Scholar 

  7. A. I. Kopylov and D. B. Kosolapov, Microbial Loop in Planktonic Communities of Marine and Freshwater Ecosystems (KnigoGrad, Izhevsk, 2011) [in Russian].

    Google Scholar 

  8. A. I. Kopylov, D. B. Kosolapov, E. A. Zabotkina, et al., “Planktonic viruses, heterotrophic bacteria, and nanoflagellates in fresh and coastal marine waters of the Kara Sea basin (the Arctic),” Inland Water Biol. 5, 241–249 (2012).https://doi.org/10.1134/S1995082912030054

    Article  Google Scholar 

  9. A. I. Kopylov, A. F. Sazhin, E. A. Zabotkina, et al., “Viruses, bacteria, and heterotrophic nanoflagellates in Laptev Sea plankton,” Oceanology (Engl. Transl.) 56, 789–798 (2016). https://doi.org/10.1134/S0001437016050052

  10. A. I. Kopylov, A. F. Sazhin, E. A. Zabotkina, et al., “Virio- and bacterioplankton in the estuary zone of the Ob River and adjacent regions of the Kara Sea shelf,” Oceanology (Engl. Transl.) 57, 105–113 (2017). https://doi.org/10.1134/S0001437017010052

  11. A. I. Kopylov, A. F. Sazhin, E. A. Zabotkina, and N. D. Romanova, “Virioplankton in the Kara Sea: The impact of viruses on mortality of heterotrophic bacteria,” Oceanology (Engl. Transl.) 55, 561–572 (2015). https://doi.org/10.1134/S0001437015040104

  12. N. G. Kosolapova, D. B. Kosolapov, A. I. Kopylov, and A. V. Romanenko, “Heterotrophic nanoflagellates in the pelagic zone and sediments of the Eastern Laptev Sea,” Oceanology (Engl. Transl.) 59, 881–892 (2019). https://doi.org/10.1134/S0001437019060092

  13. N. D. Romanova and A. F. Sazhin, “Bacterioplankton of the Kara Sea shelf,” Oceanology (Engl. Transl.) 55, 858–862 (2015). https://doi.org/10.1134/S000143701506017X

  14. N. D. Romanova, Yu. A. Mazei, D. V. Tikhonenkov, et al., “Heterotrophic microbial communities on the water-sediment boundary in the Kara Sea,” Oceanology (Engl. Transl.) 53, 334–344 (2013). https://doi.org/10.1134/S0001437013030089

  15. Marine Ecosystems of Russian Arctic: The Results of Expedition Studies in 2015 and 2017 (Shirshov Institute of Oceanography, Russian Academy of Sciences, Moscow, 2018) [in Russian].

  16. B. Binder, “Reconsidering the relationship between virally induced bacterial mortality and frequency of infected cells,” Aquat. Microb. Ecol. 18, 207–215 (1999). https://doi.org/10.3354/ame018207

    Article  Google Scholar 

  17. J. A. Boras, M. M. Sala, J. M. Arrieta, et al., “Effect of ice melting on bacterial carbon fluxes channeled by viruses and protists in the Arctic Ocean,” Polar Biol. 33, 1695–1707 (2010). https://doi.org/10.1007/s00300-010-0798-8

    Article  Google Scholar 

  18. K. Y. Børsheim and G. Bratbak, “Cell volume to carbon conversion factors for bacterivorous Monas sp. enriched from seawater,” Mar. Ecol.: Prog. Ser. 36, 171–175 (1987). https://doi.org/10.3354/meps036171

    Article  Google Scholar 

  19. D. A. Caron, “Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy and comparison with other procedures,” Appl. Environ. Microbiol. 46 (2), 491–498 (1983). PMID 16346372

    Article  Google Scholar 

  20. J. L. Clasen, S. M. Brigden, J. P. Payet, and C. A. Suttle, “Evidence that viral abundance across oceans and lakes is driven by different biological factors,” Freshwater Biol. 53, 1090–1100 (2008). https://doi.org/10.1111/j.1365-2427.2008.01992.x

    Article  Google Scholar 

  21. J. J. Cole, S. Findley, and M. L. Pace, “Bacterial production in fresh and saltwater ecosystems: a cross-system overview,” Mar. Ecol.: Prog. Ser. 43, 1–10 (1988). https://doi.org/10.3354/meps043001

    Article  Google Scholar 

  22. D. S. De Corte, T. Yokokawa, and G. J. Herndl, “Changes in viral and bacterial communities during the ice-melting season in the coastal Arctic (Kongsfjorden, Ny-Ålesund),” Environ. Microbiol. 13 (7), 1827–1841 (2011). https://doi.org/10.4319/lo.2013.58.2.0465

    Article  Google Scholar 

  23. H. W. Ducklow and S. M. Hill, “The growth of heterotrophic bacteria in the surface waters of warm core rings,” Limnol. Oceanogr. 30 (2), 239–259 (1985). https://doi.org/10.4319/lo.1985.30.2.0239

    Article  Google Scholar 

  24. M.-È. Garneau, W. F. Vincent, L. Alonso-Sáez, et al., “Prokaryotic community structure and heterotrophic production in a river-influenced coastal arctic ecosystem,” Aquat. Microb. Ecol. 42, 27–40 (2006). https://doi.org/10.3354/ame042027

    Article  Google Scholar 

  25. V. V. Gordeev, J. M. Martin, J. S. Sidorov, and M. V. Sidorova, “A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean,” Am. J. Sci. 296, 664–691 (1996). https://doi.org/10.2475/ajs.296.6.664

    Article  Google Scholar 

  26. N. Guixa-Boixereu, D. Vaqué, J. M. Gasol, et al., “Viral distribution and activity in Antarctic waters,” Deep-Sea Res. Part II 49, 827–845 (2002). .https://doi.org/10.1016/S0967-0645(01)00126-6

    Article  Google Scholar 

  27. L. R. Hodges, N. Bano, J. T. Hollibaugh, and P. Yager, “Illustrating the importance of particulate organic matter to pelagic microbial abundance and community structure—an Arctic case study,” Aquat. Microb. Ecol. 40, 217–227 (2005). https://doi.org/10.3354/ame040217

    Article  Google Scholar 

  28. M. H. Howard-Jones, V. D. Ballard, A. E. Allen, et al., “Distribution of bacterial biomass and activity in the marginal ice zone of the central Barents Sea during summer,” J. Mar. Syst. 38, 77–91 (2002). https://doi.org/10.1016/S0924-7963(02)00170-7

    Article  Google Scholar 

  29. A. I. Kopylov, E. A. Zabotkina, A. V. Romanenko, et al., “Virioplankton of the Kara Sea and the Yenisei River estuary in early spring,” Estuarine, Coastal Shelf Sci. 217, 37–44 (2019). https://doi.org/10.1016/j.ecss.2018.10.015

    Article  Google Scholar 

  30. R. Maranger, D. Vaqué, D. Nguyen, et al., “Pan-Arctic patterns of planktonic heterotrophic microbial abundance and processes: controlling factors and potential impacts of warming,” Prog. Oceanogr. 139, 221–232 (2015). https://doi.org/10.1016/j.pocean.2015.07.006

    Article  Google Scholar 

  31. B. Meon and R. M. W. Amon, “Heterotrophic bacterial activity and fluxes of dissolved free amino acids and glucose in the arctic rivers Ob, Yenisei and the adjacent Kara Sea,” Aquat. Microb. Ecol. 37, 121–135 (2004). https://doi.org/10.3354/ame037121

    Article  Google Scholar 

  32. M. Middelboe, T. G. Nielsen, and P. K. Biorsen, “Viral and bacterial production in the North Water in situ measurements batch-culture experiments and characterization of a viral-host system,” Deep Sea Res., Part II 49, 5063–5079 (2002). https://doi.org/10.1016/S0967-0645(02)00178-9

    Article  Google Scholar 

  33. R. T. Noble and J. A. Fuhrman, “Use of SYBR Green for rapid epifluorescence count of marine viruses and bacteria,” Aquat. Microb. Ecol. 14, 113–118 (1998).

    Article  Google Scholar 

  34. S. Norland, “The relationship between biomass and volume of bacteria,” in Handbook of Methods in Aquatic Microbial Ecology (Lewis, Boca Raton, 1993), pp. 303–308.

  35. S. Park, M. T. Brett, D. C. Müller-Navarra, et al., “Heterotrophic nanoflagellates and increased essential fatty acids during Microcystis decay,” Aquat. Microb. Ecol. 33, 201–205 (2003). https://doi.org/10.3354/ame033201

    Article  Google Scholar 

  36. K. G. Porter and Y. S. Feig, “The use DAPI for identifying and counting of aquatic microflora,” Limnol. Oceanogr. 25 (5), 943–948 (1980). https://doi.org/10.4319/lo.1980.25.5.0943

    Article  Google Scholar 

  37. E. B. Sherr, B. F. Sherr, and L. Fessenden, “Heterotrophic protists in the Central Arctic Ocean,” Deep Sea Res., Part II 44, 1665–1682 (1997). https://doi.org/10.1016/S0967-0645(97)00050-7

    Article  Google Scholar 

  38. E. B. Sherr, B. F. Sherr, P. A. Wheeler, and K. Thompson, “Temporal and spatial variation in stocks of autotrophic and heterotrophic microbes in the upper water column of the central Arctic Ocean,” Deep Sea Res., Part I 50, 557–571 (2003). https://doi.org/10.1016/S0967-0637(03)00031-1

    Article  Google Scholar 

  39. A. Scherwass, Y. Fischer, and H. Arndt, “Detritus as a potential food source for protozoans: utilization of fine particulate plant detritus by a heterotrophic flagellate, Chilomonas paramecium, and a ciliate, Tetrahymena pyriformis,” Aquat. Ecol. 39, 439–445 (2005). https://doi.org/10.1007/s10452-005-9012-4

    Article  Google Scholar 

  40. G. F. Steward, L. B. Fandino, J. T. Hollibaugh, et al., “Microbial biomass and viral infections of heterotrophic prokaryotes in the sub-surface layer of the central Arctic Ocean,” Deep Sea Res., Part I 54, 1744–1757 (2007). https://doi.org/10.1016/j.dsr.2007.04.019

    Article  Google Scholar 

  41. G. F. Steward, D. C. Smith, and F. Azam, “Abundance and production of bacteria and viruses in the Bering and Chukchi seas,” Mar. Ecol.: Prog. Ser. 131, 287–300 (1996). https://doi.org/10.3354/meps131287

    Article  Google Scholar 

  42. S. C. Tremaine and A. L. Mills, “Tests of the critical assumptions of the dilution method for estimating bacterivory by microeucaryotes,” Appl. Environ. Microbiol. 53 (12), 2914–2921 (1987). https://doi.org/10.1128/aem.53.12.2914-2921.1987

    Article  Google Scholar 

  43. C. Vallières, L. Retamal, P. Ramlal, et al., “Bacterial production and microbial food web structure in a large arctic river and the coastal Arctic Ocean,” J. Mar. Syst. 74, 756–773 (2008). https://doi.org/10.1016/j.jmarsys.2007.12.002

    Article  Google Scholar 

  44. D. Vaque, O. Guadavol, F. Peters, et al., “Seasonal changes in planktonic bacterivory rates under the ice-covered coastal Arctic Ocean,” Limnol. Oceanogr. 53 (6), 2427–2438 (2008). https://doi.org/10.2307/40058333

    Article  Google Scholar 

  45. M. G. Weinbauer, “Ecology of prokaryotic viruses,” FEMS Microbiol. Rev. 28 (2), 127–181 (2004). https://doi.org/10.1016/j.femsre.2003.08.001

    Article  Google Scholar 

  46. M. G. Weinbauer, Y. Bettarel, R. Cattaneo, et al., “Viral ecology of organic and inorganic particles in aquatic systems: avenues for further research,” Aquat. Microb. Ecol. 57 (3), 321–341 (2009). https://doi.org/10.3354/ame01363

    Article  Google Scholar 

  47. P. A. Wheeler, M. Gosselin, E. Sherr, et al., “Active cycling of organic carbon in the central Arctic Ocean,” Nature 380, 697–699 (1996). https://doi.org/10.1038/380697a0

    Article  Google Scholar 

  48. L. E. Wells and J. W. Deming, “Significance of bacterivory and viral lysis in bottom waters of Franklin Bay, Canadian Arctic, during winter,” Aquat. Microb. Ecol. 43, 209–221 (2006). https://doi.org/10.3354/ame043209

    Article  Google Scholar 

Download references

Funding

This study was performed within a state task (topic no. АААА-А18-118012690098-5) with financial support from the Russian Foundation for Basic Research (project nos. 18-05-60069 and 19-04-00322).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kopylov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopylov, A.I., Kosolapov, D.B., Zabotkina, E.A. et al. Distribution and Relationship between Heterotrophic Organisms and Viruses on the East Siberian Sea Shelf. Oceanology 61, 220–232 (2021). https://doi.org/10.1134/S0001437021020089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437021020089

Keywords:

Navigation