Skip to main content
Log in

Mechanism of the Decomposition of Hydrazine Monohydrate on Pd/Al2O3 Studied by in Situ IR Spectroscopy

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Pd-containing catalysts (1% Pd/Al2O3 and 5% Pd/Al2O3) supported on aluminum oxide were studied in the decomposition reaction of hydrazine monohydrate. According to in situ IR-spectroscopic data, hydrazine monohydrate was adsorbed in a linear form on the coordinatively unsaturated sites of the catalyst surface. As the temperature was increased, the adsorbed hydrazine monohydrate lost a water molecule with a change in the geometry of the molecular complex. The adsorption of hydrazine on a support and its diffusion onto palladium clusters is a more advantageous process than direct adsorption on active sites. This circumstance shows that the hydrazine adsorbed on the support can be an intermediate in the process of its decomposition. The test catalysts had a maximum activity at a temperature of about 100°C. At temperatures in a range of 100−120°C, the ratio between hydrogen and nitrogen concentrations in the reaction products was 2, which corresponds to 100% selectivity for hydrogen. The selectivity decreased significantly with the reaction temperature. The high selectivity for hydrogen at low temperatures was explained by the fact that N2H4 was chemisorbed through the formation of hydrogen–metal bonds. The hydrogen–metal bond strength in such a complex is higher than the nitrogen–metal bond strength; hence, the N−H bond breaking barrier is lower than the N−N bond breaking barrier, and this fact led to the breaking of an N–H bond and the preservation of an N–N bond. At elevated temperatures, some of the formed hydrogen atoms recombined, and the other reacted with the surface complexes of hydrazine to form the intermediate NH3−NH3, in which N–N bond breaking led to the appearance of ammonia molecules in the gas phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Hydrogen and other Alternative Fuels for Air and Ground Transportation, Pohl, H.W., Ed., London: Wiley, 1995.

    Google Scholar 

  2. Deng, Z.-Y., Ferreira, J.M.F., and Sakka, Y., Hydrogen generation materials for portable applications, J. Am. Ceram. Soc., 2008, vol. 91, no. 12, p. 3825.

    Article  CAS  Google Scholar 

  3. Nikolaidis, P. and Poullikkas, A., Renewable Sustainable Energy Rev., 2017, vol. 67, p. 597.

    Article  CAS  Google Scholar 

  4. Khan, Z., Int. J. Hydrogen Energy, 2019, vol. 44, p. 1150.

    Google Scholar 

  5. Lang, C., Jia, Y., and Yao, X., Energy Storage Mater., 2020, vol. 26, p. 290.

    Article  Google Scholar 

  6. Martin, C., Quintanilla, A., Vega, G., and Casas, J.A., Appl. Catal. B: Environ., 2022, vol. 317, p. P. 121802.

  7. Al-Thabaiti, S.A., Khan, Z., and Malik, M.A., Int. J. Hydrogen Energy, 2019, vol. 44, p. 16452.

    Article  CAS  Google Scholar 

  8. Ekinci, A., Kinet. Katal., 2020, vol. 61, no. 4, p. 540.

    Article  Google Scholar 

  9. Jiang, H.L., Singh, S.K., Yan, J.M., Zhang, X.B., and Xu, Q., ChemSusChem, 2010, vol. 3, p. 541.

    Article  CAS  PubMed  Google Scholar 

  10. Lan, R., Irvine, J.T.S., and Tao, S., Int. J. Hydrogen Energy, 2012, vol. 37, p. 1482.

    Article  CAS  Google Scholar 

  11. Singh, S.K. and Xu, Q., Catal. Sci. Technol., 2013, vol. 3, p. 1889.

    Article  CAS  Google Scholar 

  12. Song, J., Ran, R., and Shao, Z., Int. J. Hydrogen Energy, 2010, vol. 35, p. 7919.

    Article  CAS  Google Scholar 

  13. Zheng, M., Cheng, R., Chen, X., Li, N., Li, L., Wang, X., and Zhang, T., Int. J. Hydrogen Energy, 2005, vol. 30, p. 1081.

    Article  CAS  Google Scholar 

  14. Al-Thubaiti, K.S. and Khan, Z., Int. J. Hydrogen Energy, 2020, vol. 45, p. 13960.

    Article  CAS  Google Scholar 

  15. Motta, D., Barlocco, I., Bellomi, S., Villa, A., and Dimitratos, N., Nanomaterials, 2021, vol. 11, p. 1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmidt, E.W., Hydrazine and Its Derivatives, New York: Wiley Interscience, 2001, 2nd ed., p. 2232.

    Google Scholar 

  17. Manukyan, K.V., Cross, A., Rouvimov, S., Miller, J., Mukasyan, A.S., and Wolf, E.E., Appl. Catal. A: Gen., 2014, vol. 476, p. 47.

    Article  CAS  Google Scholar 

  18. Singh, S.K., Zhang, X.-B., and Xu, Q., J. Am. Chem. Soc., 2009, vol. 131, p. 9894.

    Article  CAS  PubMed  Google Scholar 

  19. Singh, S.K., Zhang, X.-B., and Xu, Q., Eur. J. Inorg. Chem., 2011, vol. 14, p. 2232.

    Article  Google Scholar 

  20. Jain, P., Anila, K.A., and Vinod, C.P., Chem. Select, 2019, vol. 4, no. 9, p. 2734.

    CAS  Google Scholar 

  21. Tong, D.G., J. Mater. Chem. A, 2019, vol. 7, p. 20442.

    Article  CAS  Google Scholar 

  22. Matyshak, V.A. and Silchenkova, O.N., Kinet. Catal., 2022, vol. 63, no. 4.

  23. Block, J. and Schulz-Ekloff, G., J. Catal., 1973, vol. 30, p. 327.

    Article  CAS  Google Scholar 

  24. Gosser, R.C. and Tompkins, F.C., Trans. Faraday Soc., 1971, vol. 67, p. 545.

    Article  Google Scholar 

  25. Aika, K.I., Ohhata, T., and Ozaki, A., J. Catal., 1970, vol. 19, p. 140.

    Article  CAS  Google Scholar 

  26. Wood, B.J. and Wise, H., J. Catal., 1975, vol. 39, p. 471.

    Article  CAS  Google Scholar 

  27. Maurel, R. and Menezo, J.C., J. Catal., 1978, vol. 51, p. 293.

    Article  CAS  Google Scholar 

  28. Swarc, M., Proc. R. Soc. London, Ser. A, 1949, vol. 198, p. 267.

    Article  Google Scholar 

  29. Contour, J.P. and Pannetier, G., J. Catal., 1972, vol. 24, p. 434.

    Article  CAS  Google Scholar 

  30. Amores, J.M.G., Escribano, V.S., Ramis, G., and Busca, G., Appl. Catal. B: Environ., 1997, vol. 13 P, p. 45.

  31. Ramis, G., Li, Y., and Busca, G., Catal. Today, 1996, vol. 28, p. 373.

    Article  CAS  Google Scholar 

  32. Chuang, C.-C., Shiu, J.-S., and Lin, J.L., Phys. Chem. Chem. Phys., 2000, vol. 2, p. 2629.

    Article  CAS  Google Scholar 

  33. Sathyanarayana, D.N. and Nicholls, D., Spectrochim. Acta, 1978, vol. 34, p. 263.

    Article  Google Scholar 

  34. Firdous, N., Janjua, N.K., Qazi, I., and Wattoo, M.H.S., Int. J. Hydrogen Energy, 2016, vol. 41, p. 984.

    Article  CAS  Google Scholar 

  35. Matyshak, V.A. and Krylov, O.V., Catal. Today, 1995, vol. 25, p. 1.

    Article  CAS  Google Scholar 

  36. Valden, M., Keiski, R.L., Xiang, N., Pere, J., Aaltonen, J., Pessa, M., Maunula, T., Savimaki, A., Lahti, A., and Harkonen, M., J. Catal., 1996, vol. 161, p. 614.

    Article  CAS  Google Scholar 

  37. Choi, K.I. and Vannice, M.A., J. Catal., 1991, vol. 127, p. 465.

    Article  CAS  Google Scholar 

  38. Matyshak, V.A. and Krylov O.V., Kinet. Catal., 2002, vol. 43, no. 3, p. 391.

    Article  CAS  Google Scholar 

  39. Contour, J.P. and Pannetier, G., Bull. Soc. Chim. Fr., 1970, p. 4260.

  40. Sacconi, L. and Sabatini, A., J. Inorg. Nucl. Chem., 1963, vol. 25, p. 1389.

    Article  CAS  Google Scholar 

  41. Durig, J.R., Bush, S.F., and Mercer, E.E., J. Chem. Phys. V, 1965, vol. 44, p. 4238.

    Article  Google Scholar 

  42. Sathyanarayana, D.N. and Nicholls, D., Spectrochim. Acta, 1978, vol. 34, p. 263.

    Article  Google Scholar 

  43. Amores, J.M.G., Escribano, V.S., Ramis, G., and Busca, G., Appl. Catal. B: Environ., 1997, vol. 13, p. 45.

    Article  Google Scholar 

  44. Ramis, G., Li, Y., and Busca, G., Catal. Today, 1996, vol. 28, p. 373.

    Article  CAS  Google Scholar 

  45. Lieske, H., Lietz, G., Sprindler, H., and Volter, J., J. Catal., 1983, vol. 81, p. 8.

    Article  CAS  Google Scholar 

  46. Zhanga, P.X., Wanga, Y.G., Huang, Y.Q., Zhang, T., Wua, G.S., and Li, J., Catal. Today, 2011, vol. 165, p. 80.

    Article  Google Scholar 

  47. Alberas, D.J., Kiss, J., Liu, Z.-M., and White, J.M., Surf. Sci., 1992, vol. 278, p. 51.

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out within the framework of a state contract (project no. 122040500058-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Silchenkova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Abbreviations and notation: FC, fuel cell; BET, Brunauer–Emmett–Teller method; XRD, X-ray diffraction analysis; TPR, temperature-programmed reduction; A, optical absorption;DFT, density functional theory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matyshak, V.A., Silchenkova, O.N., Ilichev, A.N. et al. Mechanism of the Decomposition of Hydrazine Monohydrate on Pd/Al2O3 Studied by in Situ IR Spectroscopy. Kinet Catal 64, 826–836 (2023). https://doi.org/10.1134/S0023158423060101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423060101

Keywords:

Navigation