Skip to main content
Log in

Effect of Gadolinium Additives on the Active Phase Morphology and Physicochemical and Catalytic Properties of MoVSbNbGdOx/SiO2 Catalysts in the Oxidative Dehydrogenation of Ethane to Ethylene

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The effect of gadolinium additives on the morphology, phase composition, and catalytic properties of MoVSbNbGdOx/SiO2 catalysts in the oxidative dehydrogenation of ethane to ethylene (ODE) is studied. It is shown that gadolinium concentration has a significant effect on the catalytic properties. At an optimum gadolinium content (Gd/Mo = 0.01–0.015), an increase in catalytic activity and ethylene selectivity is observed: at a temperature of 400°C, the ethylene yield achieves 72%, the ethane conversion is higher than 91%, and the ethylene selectivity is higher than 79%. According to X-ray diffraction analysis and scanning and transmission electron microscopy, the main component of the catalyst is the M1 phase stabilized both in the bulk and on the surface of SiO2 particles. The modification of the catalyst with gadolinium significantly affects the morphology of the M1 phase particles. At an optimum gadolinium content, heat treatment leads to the formation mostly of M1 phase particles with a needle-like morphology and the most developed [001] plane emerging on the surface, which exhibit the maximally high activity in ODE. The M1 phase particles with this morphology are mostly stabilized in the bulk of porous spherical SiO2 particles; therefore, they do not undergo strong agglomeration and sintering. A smaller portion of the M1 phase particles with a plate-like morphology, which exhibit a lower catalytic activity, as well as the M2 phase particles, are stabilized on the outer surface of the SiO2 particles. In the catalyst containing no Gd additives, M1 phase particles with a plate-like morphology are mostly formed; this factor leads to a decrease in the catalyst activity. The synthesized catalyst exhibits a long-term stable on-stream behavior in the reaction medium without a deterioration of the properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. Chu, B., Truter, L., Nijhuis, T., and Cheng, Y., Appl. Catal., A, 2015, vol. 498, p. 99.

  2. Bondareva, V.M., Kardash, T.Y., Ishchenko, E.V., and Sobolev, V.I., Catal. Ind., 2015, vol. 7, no. 2, p. 104.

    Article  Google Scholar 

  3. Botella, P., Garcia-Gonzalez, E., Dejoz, A., Lopez Nieto, J.M., Vazquez, M.I., and Ganzalez-Calbet, J., J. Catal., 2004, vol. 225, p. 428.

    Article  CAS  Google Scholar 

  4. Botella, P., Dejoz, A., Lopez, NietoJ.M., Concepcion, P., and Vazquez, M.I., Appl. Catal., A, 2006, vol. 298, p. 16.

  5. Botella, P., Dejoz, A., Abello, M.C., Vazquez, M.I., Arria, L., and Lopez Nieto, J.M., Catal. Today, 2009, vol. 142, p. 272.

    Article  CAS  Google Scholar 

  6. Cavani, F. and Trifirò, F., Catal. Today, 1995, vol. 24, p. 307.

    Article  CAS  Google Scholar 

  7. Valente, J.S., Armendariz-Herrera, H., Quintana-Solorzano, R., Angel, P., Nava, N., Masso, A., and Lopez Nieto, J.M., ACS Catal., 2014, vol. 4, p. 1292.

    Article  CAS  Google Scholar 

  8. Valente, J.S., Armendariz-Herrera, H., Quintana-Solorzano, R., Angel, P., Nava, N., Masso, A., and Lopez Nieto, J.M., Ind. Eng. Chem. Res., 2014, vol. 53, p. 1775.

    Article  CAS  Google Scholar 

  9. Nguyen, T.T., Burel, L., Nguyen, D.L., Pham-Huu, C., and Millet, J.M., Appl. Catal., A, 2012, vol. 433, p. 41.

  10. Nguyen, T.T., Aouine, M., and Millet, J.M.M., Catal. Commun., 2012, vol. 21, p. 22.

    Article  CAS  Google Scholar 

  11. Nguyen, T.T., Deniau, B., Baca, M., and Millet, J.M.M., Top. Catal., 2016, vol. 59, p. 1496.

    Article  CAS  Google Scholar 

  12. Deniau, B., Nguyen, T.T., Delichere, P., Safonova, O., and Millet, J.M.M., Top. Catal., 2013, vol. 56, p. 1952.

    Article  CAS  Google Scholar 

  13. Ishchenko, E.V., Kardash, T.Yu., Gulyaev, R.V., Ishchenko, A.V., Sobolev, V.I., and Bondareva, V.M., Appl. Catal., A, 2016, vol. 514, p. 1.

  14. Ishchenko, E.V., Gulyaev, R.V., Kardash, T.Y., Ishchenko, A.V., Gerasimov, E.Yu., Sobolev, V.I., and Bondareva, V.M., Appl. Catal., A, 2017, vol. 534, p. 58.

  15. Xie, Q., Chen, L., Wenig, W., and Wan, H., J. Mol. Catal. A: Chem., 2005, vol. 240, p. 191.

    CAS  Google Scholar 

  16. Lopez Nieto, J.M., Botella, P., Vzquez, M.I., and Dejoz, A., US Patent 7319179 B2, 2008.

  17. Lopez Nieto, J.M., Botella, P, Vazquez, M.I., and Dejoz, A., WO 03/064035 A1, 2003.

  18. Najari, S., Saeidi, S., Concepcion, P., Dionysiou, D.D., Bhargava, S.K., Lee, A.F., and Wilson, K., Chem. Soc. Rev., 2021, vol. 50, p. 4564.

    Article  CAS  PubMed  Google Scholar 

  19. McCain, J.H., US Patent 5524236, 1985.

  20. Lopez Nieto, J.M., Botella, P., Vazquez, M.I., and Dejoz, A., Catal. Today, 2004, vols. 91–92, p. 241.

    Article  Google Scholar 

  21. Nieto, J.M.L., Botella, P., Vazquez, M.I., and Dejoz, A., Chem. Commun., 2002, p. 1906.

  22. Zenkovets, G.A., Shutilov, A.A., Bondareva, B.M., Sobolev, V.I., Marchuk, A.S., Tsybulya, S.V., Prosvirin, I.P., Ishchenko, A.V., and Gavrilov, V.Yu., ChemCatChem, 2020, vol. 12, p. 4149.

    Article  CAS  Google Scholar 

  23. Zenkovets, G.A., Shutilov, A.A., Bondareva, V.M., Dovlitova, L.S., Sobolev, V.I., Marchuk, A.S., Tsybulya, S.V., and Prosvirin, I.P., Kinet. Catal., 2021, vol. 62, p. 315.

    Article  CAS  Google Scholar 

  24. DeSanto, P., Butterey, D., Grasseli, R., Lugmair, C., Volpe, A., Toby, B., and Vogt, T., Krystallogr. Cryst. Mater., 2004, vol. 219, p. 152.

    CAS  Google Scholar 

  25. Tu, X., Niwa, M., Arano, A., Kimata, Y., Okazaki, E., and Nomura, S., Appl. Catal., A, 2018, vol. 549, p. 152.

  26. Guliants, V.V., Bhandari, R., Brongersma, H.H., Knoester, A., Gaffney, A.M., and Han, S., J. Phys. Chem. B, 2005, vol. 109, p. 10234.

    Article  CAS  PubMed  Google Scholar 

  27. Solsona, B., Vazquez, M.I., Ivars, F., Dejoz, A., Concepcion, P., and Lopez Nieto, J.M., J. Catal., 2007, vol. 252, p. 271.

    Article  CAS  Google Scholar 

  28. Murayama, H., Vitry, D., Ueda, W., Fuchs, G., Anne, M., and Dubois, J.L., Appl. Catal., A, 2007, vol. 318, p. 137.

  29. Woo, J., Borisevich, A., Koch, C., Guliants, V.V., Vogt, T., and Buttrey, D.J., ChemCatChem, 2015, vol. 7, p. 3731.

    Article  CAS  Google Scholar 

  30. Pyrz, W.D., Blom, D.A., Shiju, N.R., Guliants, V.V., Vogt, T., and Burtrey, D.J., J. Phys. Chem. C, 2008, vol. 112, p. 10043.

    Article  CAS  Google Scholar 

  31. Ivars, F., Solsona, B., Hernandez, S., and Lopez-Nieto, J.M., Catal. Today, 2010, vol.149, p. 260.

    Article  CAS  Google Scholar 

  32. Svintsitskiy, D.A., Kardash, T.Yu., Lazareva, E.V., Saraev, A.A., Derevyannikova, E.A., Vorokhta, M., Šmíd, B., and Bondareva, V.M., Appl.Catal., A, 2019, vol. 579, p. 141.

  33. Andrushkevich, N.V., Popova, G.Y., Chesalov, Y.A., Ischenko, E.V., Kramov, M.I., and Kaichev, V.V., Appl. Catal., A, 2015, vol. 506, p. 109.

  34. Price, W.J., Analytical Atomic Absorption Spectrometry, London: Heyden & Son, 1972.

  35. Topas 4.3, Bruker AXS, 2015.

  36. Inorganic Crystal Structure Database, ICSD, in Release 2008. Fashinformationszentrum Karsruhe D #8211; 1754 Eggenstein #8211; Leopoldshafen, Germany, 2008.

    Google Scholar 

  37. Moudler, J., Stickle, W., Sobol, P., and Bomben, K., Handbook of X-ray Photoelectron Spectroscopy, Eden. Prairie: Perkin-Elmer, 1992.

  38. Scofield, J.H., J. Electron Spectrosc. Relat. Phenom., 1976, vol. 8, p. 129.

    Article  CAS  Google Scholar 

  39. http://xpspeak.software.informer.com/4.1/.

  40. Gartner, C.A., Veen, A.C., and Lercher, J.A., ChemCatChem, 2013, vol. 5, p. 3196.

    Article  Google Scholar 

  41. Sanders, A.F.H., Jong, A.M., Beer, V.H.J., Veen, A.C., and Niemantsverdriet, J.W., Appl. Surf. Sci., 1999, vols. 144–145, p. 380.

    Article  Google Scholar 

  42. Saih, Y. and Segawa, K., Appl. Catal., A, 2009, vol. 353, p. 258.

  43. Demeter, M., Neumann, M., and Reichelt, W., Surf. Sci., 2000, vols. 454–456, p. 41.

    Article  Google Scholar 

  44. Silversmit, G., Depla, D., Poelman, H., Marin, G.B., and Gryse, R., J. Electron Spectrosc. Relat. Phenom., 2004, vol. 135, p. 167.

    Article  CAS  Google Scholar 

  45. Sawatzky, G.A. and Post, D., Phys. Rev. B, 1979, vol. 20, p. 1546.

    Article  CAS  Google Scholar 

  46. Farahani, M.D., Dasireddy, V.D.B.C., and Friedrich, H.B., ChemCatChem, 2018, vol. 10, p. 2059.

    Article  CAS  Google Scholar 

  47. Xue, J., Wang, R., Zhang, Z., and Qiu, S., Dalton Trans., 2016, vol. 45, p. 16519.

    Article  CAS  PubMed  Google Scholar 

  48. He, G.-H., Liang, C.-J., Ou, Y.-D., Liu, D.-N., Fang, Y.-P., and Xu, Y.-H., Mater. Res. Bull., 2013, vol. 48, p. 2244.

    Article  CAS  Google Scholar 

  49. Li, L., Zhang, Y.X., Fang, X.S., Zhai, T.Y., Liao, M.Y., Wang, H.Q., Li, G.H., Koide, Y., Bando, Y., and Golberg, D., Nanotechnology, 2011, vol. 22, p. 165704.

  50. Zhang, H., Malik, V., Mallapragada, S., and Akinc, M., J. Magn. Magn. Mater., 2017, vol. 423, p. 386.

    Article  CAS  Google Scholar 

  51. Melzer, D., Xu, P., Harimann, D., Zhu, Y., Browning, N.D., Sanchez-Sanchez, M., and Lercher, J.A., Angew. Chem., Int. Ed., 2016, vol. 55, p. 8873.

    Article  CAS  Google Scholar 

  52. Melzer, D., Mestl, G., Wanninger, K., Zhu, Y., Browning, D., Sanchez-Sanchez, M., and Lerche, J.A., Nat. Commun., 2019, vol. 10, p. 4012.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Xin, C., Wang, F., and Xu, Q., Appl. Catal., A, 2021, vol. 610, p. 117946.

  54. Yun, Y.S., Lee, M., Sung, J., Yun, D., Kim, T.Y., Park, H., Lee, K.P., Song, C.K., Kim, Y., Lee, J., Seo, Y.-J., Song, I.K., and Yi, J., Appl. Catal., B, 2018, vol. 237, p. 554.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation under a state task to Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences (project АААА-А21-121011390054-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Zenkovets.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Abbreviations and notation: ODE, oxidative dehydrogenation of ethane to ethylene; XRD, X-ray diffraction analysis; HRTEM, high-resolution transmission electron microscopy; SEM, scanning electron microscopy; XPS, X-ray photoelectron spectroscopy; EDS, energy dispersive spectroscopy; EDX, energy dispersive X-ray spectroscopy; τ, contact time; Х, ethane conversion; Si, product selectivity; B, ethylene yield; C, concentration; U, reaction mixture flow rate; m, catalyst weight; W1, ethane conversion rate; W2, ethylene formation rate; SBET, specific surface area; VΣ, total pore volume; Vs, mesopore volume; Dmes, dominant mesopore diameter; Vmac, macropore volume; Dmac, macropore diameter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkovets, G.A., Shutilov, A.A., Bondareva, V.M. et al. Effect of Gadolinium Additives on the Active Phase Morphology and Physicochemical and Catalytic Properties of MoVSbNbGdOx/SiO2 Catalysts in the Oxidative Dehydrogenation of Ethane to Ethylene. Kinet Catal 63, 732–746 (2022). https://doi.org/10.1134/S0023158422060179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158422060179

Keywords:

Navigation